The Adaptation of Visual Pigments to the Photic Environment

  • John N. Lythgoe
Part of the Handbook of Sensory Physiology book series (SENSORY, volume 7 / 1)


In 1936 Clarke wrote: “These results [clear ocean water selectively transmits blue light] raise the question of the possibility of a shift in sensitivity of the eyes of a deep water fish towards the blue end of the spectrum.” This prediction must be one of the most accurate in biology, for twenty-one years later Denton and Warren (1957) and Munz (1957) published papers showing that bathypelagic fishes did indeed possess large quantities of visual pigments with λmax located in the blue region of the spectrum.


Spectral Distribution Visual Pigment Crater Lake Spectral Radiance Spectral Irradiance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aberg, B.: Physiologische und ökologische Studien über die pflanzliche Photomorphose. Symb. Botan. Upsaliensis 8, 1–189 (1943).Google Scholar
  2. Ålvik, G.: Über Lichtabsorption von Wasser und Algen in nat. Gewässern. Bergens Museums Årsbok. Naturv. rekke 2. (1937).Google Scholar
  3. Barbier, D.: Analyse du spectre du ciel nocturne. Ann. géophys. 11, 181–208 (1955).Google Scholar
  4. Barlow, H. B.: Purkinje shift and retinal noise. Nature (Lond.) 179 255–256 (1957).Google Scholar
  5. Bayliss, L. E., Lythgoe, R. J., Tansley, K.: Some new forms of visual purple found in sea fishes, with a note on the visual cells of origin. Proc. roy. Soc. B. 816, 95–113 (1936).Google Scholar
  6. Beebe, W.: Half Mile Down. London: John Lane 1935.Google Scholar
  7. Boden, B. P., Kampa, E. M.: Spectral composition of the luminescence of the euphausiid. Thysanoessa raschii. Nature (Lond.) 184, 1321–1322 (1959).Google Scholar
  8. — Planktonic bioluminescence. Oceanogr. Mar. Biol. Ann. Rev. 2, 341 (1964).Google Scholar
  9. — — Snodgrass, J. M.: Underwater daylight measurements in the Bay of Biscay. J. Mar. biol. Ass. U.K. 39, 227–238 (1960).Google Scholar
  10. Bridges, C. D. B.: Absorption properties, interconversions, and environmental adaptation of pigments from fish photoreceptors. Cold Spr. Harb. Symp. quant. Biol. 30, 317–334 (1965 a).Google Scholar
  11. — The grouping of fish visual pigments about preferred positions in the spectrum. Vision Res. 5, 223–238 (1965b).Google Scholar
  12. Chamberlain, J. W.: Physics of the Aurora and Airglow. New York-London: Academic Press 1961.Google Scholar
  13. Clarke, G. L.: On the depth at which fishes can see. Ecology 17, 452–456 (1936).Google Scholar
  14. — The utilization of solar energy by aquatic organisms. In: Problems of lake biology. Amer. Ass. Advanc. Sci. 10, 27–38 (1939).Google Scholar
  15. James, H. R.: Laboratory analysis of the absorption of light by sea water. J. opt. Soc. Amer. 29, 43–55 (1939).Google Scholar
  16. Condit, H. R., Grum, F.: Spectral energy distribution of daylight. J. opt. Soc. Amer. 54, 937–943 (1964).Google Scholar
  17. Dartnall, H. J. A.: Visual pigments of colour vision. In: Mechanisms of Colour Discrimination, pp. 147–161. Ed. by Y. Galifret. Oxford: Pergamon Press 1960.Google Scholar
  18. — Extraction, measurement and analysis of visual photopigment. In: The Eye, pp. 323–365. Ed. by H. Davson. New York-London: Academic Press 1962.Google Scholar
  19. Goodeve, C. F.: Scotopic luminosity curve and the absorption spectrum of visual purple. Nature (Lond.) 139, 409–411 (1937).Google Scholar
  20. Lythgoe, J. N.: The spectral clustering of visual pigments. Vision Res. 5, 81–100 (1966).Google Scholar
  21. David, C. N., Conover, R. J.: Preliminary investigation of the physiology and ecology of luminescence in the copepod, Metridia lucens. Biol. Bull. 121, 92 (1961).Google Scholar
  22. Davis, R., Gibson, K. S.: Filters for the reproduction of sunlight and daylight and the determination of colour temperature. Bur. Standards misc. Pub. 114, (1931).Google Scholar
  23. Dawson, L. H., Hulburt, E. O.: The scattering of light by water. J. opt. Soc. Amer. 27, 199–201 (1937).Google Scholar
  24. Denton, E. J.: The contributions of the orientated photosensitive and other molecules to the absorption of the whole retina. Proc. roy. Soc. B 150, 78–94 (1959).Google Scholar
  25. Gilpin-Brown, J. B., Wright, P. G.: On the “filters” in the photophores of mesopelagic fish and on a fish emitting red light and especially sensitive to red light. Proc. Physiol. Soc. (in press).Google Scholar
  26. Nicol, J. A. C.: The chorioidal tapeta of some cartilagenous fishes (Chondrichthyes). J. mar. biol. Ass. U.K. 44, 219–258 (1964).Google Scholar
  27. Warren, F. J.: Photosensitive pigments in the retinae of deep-sea fish. J. mar. biol. Ass. U.K. 36, 651–662 (1957).Google Scholar
  28. Shaw, T. I.: The visual pigments of some deep-sea elasmobranchs. J. mar. biol. Ass. U.K. 43, 65–70 (1963).Google Scholar
  29. Dufay, J.: Spectre, couleur et polarisation de la lumière du ciel nocturne. J. phys. Radium (Paris) 10, 219–240 (1929).Google Scholar
  30. Duntley, S. Q.: The visibility of submerged objects I. Proc. armed Forces nat. res. Council Vision Comm. 27, 57 (1950).Google Scholar
  31. Duntley, S. Q.: The visibility of submerged objects II. Proc. armed Forces nat. Res. Council Vision Comm. 28, 60 (1951).Google Scholar
  32. — Underwater visibility. In: The Sea, pp. 452–455. Ed. by M. N. Hill. New York-London: Interscience Publ. 1962.Google Scholar
  33. — Light in the sea. J. opt. Soc. Amer. 53, 214–233 (1963).Google Scholar
  34. Federer, C. A., Tanner, C. B.: Spectral distribution of light in the forest. Ecology 47, 555–560 (1966).Google Scholar
  35. Haneda, Y.: Über den Leuchtfisch, Malacocephalus laevis (Lowe). Jap. J. med. Sci. III, 5, 355 (1938).Google Scholar
  36. Harvey, E. N.: Bioluminescence. New York: Academic Press 1952.Google Scholar
  37. — Survey of luminous organisms. In: Luminescence of biological systems, pp. 1–24. Ed. by F. H. Johnson. Washington, D. C.: Amer. Assoc. Adv. Sci. 1955.Google Scholar
  38. Chase, A.M., McElroy, W. D.: The spectral energy curve of luminescence of the ostracod crustacean, Cypridina and other luminous organisms. J. cell. comp. Physiol. 50, 499 (1957).Google Scholar
  39. Hastings, J. W., Sweeney, B. M.: The luminescent reaction in extracts of the marine dino-flagellate Gonyaulax polyedra. J. cell. Comp. Physiol. 49, 209–226 (1957).Google Scholar
  40. Helmholtz, H.von: Handbuch der Physiologischen Optik, 2nd Ed. Hamburg: Voss 1896.Google Scholar
  41. Hemmings, C. C., Lythgoe, J. N.: Better visibility for divers in dark water. Triton 9, 28–31 (1964).Google Scholar
  42. Henderson, S. T., Hodgkiss, D.: The spectral energy distribution of daylight. Brit. J. appl. Phys. 14, 125 (1963).Google Scholar
  43. Hubbard, R.: Bleaching of rhodopsins by light and heat. Nature (Lond.) 181, 1126 (1958).Google Scholar
  44. Hulburt, E. O.: Optics of distilled and natural waters. J. opt. Soc. Amer. 54, 937–944 (1945).Google Scholar
  45. Jerlov, N. G.: Optical studies of ocean water. Rept. Swedish deep-sea Exped. 3, 1–59 (1951).Google Scholar
  46. — Optical classification of ocean water. In: Physical Aspects of Light in the Sea, pp. 45–49. Honolulu: Univ. of Hawaii Press 1964.Google Scholar
  47. — Optical Oceanography. Amsterdam-London-New York: Elsevier 1968.Google Scholar
  48. Kullenberg, B.: On radiant energy measurements in the sea. Svenska hydr. biol. Kommissionens skrifter 3e ser. Hydrogrophie Bd. 1, H. 1 (1946).Google Scholar
  49. Judd, D. B., MacAdam, D. L., Wyszecki, G.: Spectral distribution of typical daylight as a function of correlated color temperature. J. opt. Soc. Amer. 54, 1031–1040 (1964).Google Scholar
  50. Kalle, K.: The problem of Gelbstoff in the Sea. Oceanog. marine Biol. ann. Rev. 4, 91–104 (1966).Google Scholar
  51. Kampa, E. M.: Euphausiopsin, a new photosensitive pigment from the eye of euphausiid crustaceans. Nature (Lond.) 175, 996–997 (1955).Google Scholar
  52. — Daylight penetration measurements in three oceans. Union Géod. Geophys. intern. Monogr. 10, 91–96 (1961).Google Scholar
  53. — Underwater daylight and moonlight measurements in the eastern North Atlantic. J. mar. biol. Ass. U. K. 50, 391–420 (1970)Google Scholar
  54. Boden, B. P.: Light generation in a sonic scattering layer. Deep-sea Res. 4, 73–92 (1957).Google Scholar
  55. Koschmieder, H.: Theorie der horizontalen Sichtweite. Beitr. Phys. freien Atm. 12, 33–53 (1924)Google Scholar
  56. Köttgen, E., Abelsdorff, G.: Absorption und Zersetzung des Sehpurpurs bei den Wirbeltieren. Z. Psychol. Physiol. Sinnesorg. 12, 161–184 (1896).Google Scholar
  57. LeGrand, Y.: Light Colour and Vision. New York: John Wiley & Sons p. 123, 1957.Google Scholar
  58. Lundquist, G.: Sjöarnas transparens, farg och areal. Sveriges Geol. Unders. Afh. ser. C. No. 397, 1–28 (1936).Google Scholar
  59. Lythgoe, J. N.: Visual pigments and underwater vision. In: Light as an Ecological Factor, pp. 375–391. Ed. by R. Bainbridge, G. C. Evans and O. Rackham. Oxford: Blackwell 1966.Google Scholar
  60. — Visual pigments and visual range underwater. Vision Res. 8, 997–1012 (1968).Google Scholar
  61. Dartnall, H.J.A.: A deep-sea rhodopsin in a mammal. Nature (Lond.) 227, 955–956 (1970).Google Scholar
  62. Hemmings, C. C.: Polarized light and underwater vision. Nature (Lond.) 213, 893–894 (1967).Google Scholar
  63. Middleton, W. E. K.: Visibility in Metereology, pp. 28–42. Toronto: Univ. of Toronto Press 1941.Google Scholar
  64. Moon, P.: Proposed standard solar radiation curves for engineering use. J. Franklin Inst. 230, 583 (1940).Google Scholar
  65. Morel, A.: Etude expérimental de la diffusion de la lumière par l’eau, les solutions de chlorure de sodium et l’eau de mer optiquement pures. J. Chim. Phys. 10, 1359–1366 (1966).Google Scholar
  66. Munz, F. W.: The photosensitive retinal pigments of marine and euryhaline teleost fishes. Ph. D. Thesis, Univ. of California. Los Angeles (1957).Google Scholar
  67. — Photosensitive pigments from the retinae of certain deep sea fishes. J. Physiol. 140, 220–225 (1958).PubMedGoogle Scholar
  68. — The visual pigments of epipelagic and rocky shore fishes. Vision Res. 4, 441–454 (1964).PubMedGoogle Scholar
  69. Nicol, J. A. C.:The spectral composition of the light of Polynoid worms. J. mar. biol. Ass. U.K. 36, 529–538 (1957a).Google Scholar
  70. — Spectral compositions of the light of Chaetopterus. J. mar. biol. Ass. U.K. 36, 629–642 (1957b).Google Scholar
  71. — Luminescence in Polynoids IV. Measurements of light intensity. J. mar. biol. Ass. 37, 33–41 (1958a).Google Scholar
  72. — Spectral composition of the light of Pholas dactylus L. J. mar. biol. Ass. U.K. 37, 43–47 (1958b).Google Scholar
  73. — Observations on luminescence in Noctiluca. J. mar. biol. Ass. U.K. 37, 535–549 (1958c).Google Scholar
  74. — Observations on the luminescence of Pennatula phosphorea, with a note on the luminescence of Virgularia mirabilis. J. mar. biol. Assoc. 37, 551–563 (1958 d).Google Scholar
  75. — Observations of luminescence in pelagic animals. J. mar. biol. Ass. U.K. 37, 705–752 (1958e).Google Scholar
  76. — Spectral composition of the light of the lantern-fish, Myctophum punctatum. J. mar. biol. Ass. U.K. 39, 27–32 (1960).Google Scholar
  77. — Animal luminescence. Advan. comp, physiol. Biochem. 217–273 (1962).Google Scholar
  78. Pirenne, M. H.: Limits of the visible spectrum. Research 4, pp. 508–515 (1951).Google Scholar
  79. Poole, H. H., Atkins, W. R. G.: The penetration into the sea of various wavelengths as measured by emission or rectifier photo-electric cells. Proc. roy. Soc. London B 123, 151–165 (1937).Google Scholar
  80. Rayleigh, Lord (Strutt, R. J.): Absolute intensity of the aurora line in the night sky and the number of atomic transitions. Proc. roy. Soc. Lond. A 129, 458–467 (1930).Google Scholar
  81. Reuter, T.: Visual pigments and visual cell activity in the retinae of tadpoles and adult frogs (Rana temporaria L).). Acta zool. Fenn. 122, 1–64 (1969).Google Scholar
  82. Richardson, E. A.: Contrast enhancement imaging devices by selection of input photosurface spectral response. Advan. Electronics and Electron Phys. 28 B, 661–675 (1969).Google Scholar
  83. Rozenberg, G. V.: Twilight — a Study in Atmospheric Optics. Plenum Press, N. Y. (1966).Google Scholar
  84. Rushton, W. A. H.: The rhodopsin density in the human rods. J. Physiol. 134, 30–46 (1956).PubMedGoogle Scholar
  85. Sastri, V. D. P., Das, S. R.: Typical spectral distributions and colour for tropical daylight. J. opt. Soc. Amer. 58, 391–398 (1968).Google Scholar
  86. Sauberer, F.: Bemerkungen über optische Untersuchungen an Gewässern. Bioklim., Beiblat. Band 9, (1942).Google Scholar
  87. Smith, R. C., Tyler, J. E.: Optical properties of clear natural water. J. opt. Soc. Amer. 57, 589–595 (1967).Google Scholar
  88. Spence, D. H. N., Campbell, R. M., ChrystalJ.: Spectral intensity in some Scottish freshwater lochs. Freshwater Biol. 1, in press (1971).Google Scholar
  89. Stewart, K. W.: Observations on the morphology and optical properties of the adipose eyelid of fishes. J. fish. Res. Bd. Canada 19, 1161–1162 (1962).Google Scholar
  90. Stiles, W. S.: A modified Helmholtz line element in brightness-colour space. Proc. phys. Soc. (Lond.) 58, 41 (1946).Google Scholar
  91. — The physical interpretation of the spectral sensitivity curve of the eye. Trans. Optical Convention of the Worshipful Company of Spectacle Makers 1948, 97–109.Google Scholar
  92. Sullivan, S. A.: Experimental study of the absorption in distilled water, artificial sea water, and heavy water in the visible region of the spectrum. J. opt. Soc. Amer. 53, 962–967 (1963).Google Scholar
  93. Talling, J. F.: Photosynthesis and underwater radiation. New Phytol. 56, 1–132 (1957).Google Scholar
  94. Timofeeva, V. A.: Spatial distribution of the degree of polarization of natural light in the sea. Izv. Akad. Nauk. S.S.S.R. Geofiz. 6, 1843–1851 (1962).Google Scholar
  95. Smith, R. C., Tyler, J. E.: Optical properties of natural water. J. opt. Soc. Amer. 57, 589–601 (1967).Google Scholar
  96. Tyler, J. E.: Natural water as a monochromator. Limnol. Oceanog. 4, 102–105 (1959).Google Scholar
  97. — Radiance distribution as a function of depth in an underwater environment. Bull. Scripps. Inst. Oceanog. Univ. Calif. 7, 363–412 (1960).Google Scholar
  98. In situ spectroscopy in ocean and lake waters. J. opt. Soc. Amer. 55, 800–805 (1965).Google Scholar
  99. Preisendorfer, R. W.: Transmission of energy within the sea. In: The Sea, Vol. 2. pp. 397–451. Ed. by M. N. Hill. New York-London: Interscience Publ. 1962.Google Scholar
  100. Smith, R. C.: Spectroradiometric characteristics of natural light under water. J. opt. Soc. Amer. 57, 595–601 (1967).Google Scholar
  101. — — Measurements of Spectral Irradiance Underwater. New York, London, Paris: Gordon and Breach, pp. 1–103 (1970).Google Scholar
  102. Utterback, C. L.: Spectral bands of submarine solar radiation in the North Pacific. Int. p. l’Explor. Mer., Rapp et Procés-Verbaux C. 1, 2 (1936).Google Scholar
  103. Wald, G.: Pigments of the retina II. Sea robin, sea bass and scup. J. gen. Physiol. 20, 45–56 (1936).PubMedGoogle Scholar
  104. Brown, P. K., Brown, P. S.: Visual pigments and depth of habitat of marine fishes. Nature (Lond.) 180, 969–971 (1957).Google Scholar
  105. Waterman, T. H.: Systems analysis and the visual orientation of animals. Amer. Sci. 54, 15–45 (1966).Google Scholar
  106. Wyszecki, G., Stiles, W. S.: Colour Science. New York-London-Sydney: John Wiley & Sons 1967.Google Scholar

Copyright information

© Springer-Verlag, Berlin · Heidelberg 1972

Authors and Affiliations

  • John N. Lythgoe
    • 1
  1. 1.BrightonUK

Personalised recommendations