Skip to main content

Generation of Responses in Receptor

  • Chapter
Principles of Receptor Physiology

Part of the book series: Handbook of Sensory Physiology ((SENSORY,volume 1))

Abstract

Receptors are specialized nerve cells and share with them a number of important properties. Therefore, a brief description of the general features of nerve cells may be useful as an introduction to the study of receptors. A diagram of a nerve cell and its connections is shown in Fig. 1. The cell includes a dendritic tree, the soma, the axon and terminal branches. In vertebrates, synaptic contacts occur mostly at the soma and dendrites; in invertebrates they may be located at the axon. In both vertebrates and invertebrates, dendrites may be absent. The axon can be over 1 m long, but in many cells it is so short (about 1 mm) that it cannot be easily distinguished from the dendritic branches (Golgi, 1883).

Diagram of nerve cells. The synaptic endings of nerve cells are supposed to be secretory elements which release a “transmitter” substance when their membrane is depolarized. The transmitter evokes a change of permeability of the postsynaptic membrane which may produce depolarization or hyperpolarization of the postsynaptic cell. Impulses are usually generated at the initial portion of the axon (cross-hatched area)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adrian, E. D.: The basis of sensation. London: Christophers 1928.

    Google Scholar 

  • — The mechanism of nervous action. Philadelphia: Univ. Penn. Press 1931.

    Google Scholar 

  • —: The physical background of perception. Oxford: Clarendon 1947.

    Google Scholar 

  • Arvanitaki, A.: Les variations graduees de la polarization des systemes excitables. Paris: Hermann & Cie. 1938.

    Google Scholar 

  • Bairati, A.: Anatomia Umana. Torino: Minerva Medica 1961.

    Google Scholar 

  • Baumann, F.: Slow and spike potentials recorded from retinula cells in the honeybee drone in response to light. J. gen. Physiol. 52, 855–875 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Baylor, D. A., Fuortes, M. G. F.: Electrical responses of single cones in the retina of the turtle. J. Physiol. (Lond.) 207, 77–92 (1970).

    CAS  Google Scholar 

  • Berman, M.: The formulation and testing of models. Ann. N. Y. Acad. Sci. 108, 182–194 (1963).

    Article  PubMed  CAS  Google Scholar 

  • Bernhard, C. G., Granit, R.: Nerve as model temperature end organ. J. gen. Physiol. 29, 257–265 (1946).

    Article  Google Scholar 

  • Bortoff, A.: Localization of slow potential responses in the Necturus retina. Vision Res. 4, 627–635 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Norton, A. L.: An electrical model of the vertebrate photoreceptor cell. Vision Res. 7, 253–263 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Castillo, J. del, Katz, B.: Quantal components of the end-plate potential. J. Physiol. (Lond.) 124, 560–573 (1954).

    Google Scholar 

  • Coombs, J. S., Eccles, J. C., Fatt, P.: The specific ionic conductances and the ionic movements across the motoneuronal membrane that produce the inhibitory post-synaptic potential. J. Physiol. (Lond.) 130, 326–373 (1955a).

    CAS  Google Scholar 

  • — — — Excitatory synaptic action in motoneurones. J. Physiol. (Lond.) 130, 374–395 (1955b).

    CAS  Google Scholar 

  • Davis, H.: Some principles of sensory receptor action. Physiol. Rev. 41, 391–416 (1961).

    PubMed  CAS  Google Scholar 

  • — A model for transducer action in the cochlea. Cold Spr. Harb. Symp. quant. Biol. 30, 181–189 (1965).

    CAS  Google Scholar 

  • Dirac, P. A. M: The principles of quantum mechanics. London: Oxford Univ. Press 1947.

    Google Scholar 

  • Eccles, J. C.: The electrophysiological properties of the motoneurone. Cold Spr. Harb. Symp. quant. Biol. 17, 175–183 (1952).

    CAS  Google Scholar 

  • — The Neurophysiological Basis of Mind: The principles of Neurophysiology. Oxford: Clarendon Press 1953.

    Google Scholar 

  • — The physiology of nerve cells. Baltimore: Johns Hopkins Univ. Press 1957.

    Google Scholar 

  • Eyzacuirre, C., Kuffler, S. W.: Process of excitation in the dendrites and in the soma of single isolated sensory nerve cells of the lobster and crayfish. J. gen. Physiol. 39, 87–119 (1955).

    Article  Google Scholar 

  • Fatt, P.: Alterations produced in the post-junctional cell by the inhibitory transmitter. In: Inhibition in the nervous system and γ-aminobutyric acid. Ed. by Roberts, E. New York: Pergamon Press 1960.

    Google Scholar 

  • Katz, B.: An analysis of the end-plate potential recorded with an intra-cellular electrode. J. Physiol. (Lond.) 115, 320–370 (1951).

    CAS  Google Scholar 

  • Fechner, G. T.: Elemente der Psychophysik. Leipzig: J. C. Barth 1860.

    Google Scholar 

  • Fessard, A.: Proprietes rythmique de la matiere vivante. Paris: Herman & Cie. 1936.

    Google Scholar 

  • FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445–466 (1961).

    Article  PubMed  CAS  Google Scholar 

  • Flock, A.: Transducing mechanisms in the lateral line canal organ receptors. Cold Spr. Harb. Symp. quant. Biol. 30, 133–144 (1965).

    CAS  Google Scholar 

  • Wersall, J.: A study of the orientation of the sensory hairs of the receptor cells in the lateral line organs of fish with special reference to the function of the receptors. J. Cell Biol. 15, 19–27 (1962).

    Article  PubMed  CAS  Google Scholar 

  • Fuortes, M. G. F.: Electric activity of cells in the eye of Limulus. Amer. J. Ophthal. 46, 210–223 (1958).

    PubMed  CAS  Google Scholar 

  • — Initiation of impulses in visual cells of Limulus. J. Physiol. (Lond.) 148, 14–28 (1959).

    CAS  Google Scholar 

  • Frank, K., Becker, M. C.: Steps in the Production of Motoneuron Spikes. J. gen. Physiol. 40, 735–752 (1957).

    Article  PubMed  CAS  Google Scholar 

  • Hodgkin, A. L.: Changes in time scale and sensitivity in the Ommatidia of Limulus. J. Physiol. (Lond.) 172, 239–263 (1964).

    CAS  Google Scholar 

  • Mantegazzini, F.: Interpretation of the repetitive firing of nerve cells. J. gen. Physiol. 45, 1163–1179(1962).

    Article  PubMed  CAS  Google Scholar 

  • Poggio, G. F.: Transient responses to sudden illumination in cells of the eye of Limulus. J. gen. Physiol. 46, 435–452 (1963).

    Article  PubMed  CAS  Google Scholar 

  • Gasser, H. S.: Axons as samples of nervous tissue. J. Neurophysiol. 2, 361–369 (1939).

    Google Scholar 

  • Golgi, C.: Recherches sur l’histologie des centres nerveux. Arch. ital. Biol. 3, 285–317 (1883).

    Google Scholar 

  • Gorman, A. L. F., McReynolds, J. S.: Hyperpolarizing and depolarizing receptor potentials in the scallop eye. Science 165, 309–310 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Gray, J. A. B., Sato, M.: Properties of the receptor potential in Pacinian corpuscles. J. Physiol. (Lond.) 122, 610–636 (1953).

    CAS  Google Scholar 

  • Grundfest, H.: Electrical inexcitability of synapses and some consequences in the central nervous system. Physiol. Rev. 37, 337–361 (1957).

    PubMed  CAS  Google Scholar 

  • — An electrophysiological basis for cone vision in fish. Arch. ital. Biol. 96, 135–144 (1958).

    Google Scholar 

  • — Synaptic and ephaptic transmission. In: Handbook of physiology. Neurophysiology. Ed. by Field, J. Washington: Amer. Physiol. Soc. 1959.

    Google Scholar 

  • — Excitation by hyperpolarizing potentials. A general theory of receptor activities. In: Nervous inhibition. Ed. by Florey, E. London: Pergamon Press 1961.

    Google Scholar 

  • — Electrophysiology and pharmacology of different components of bioelectric transducers. Cold Spr. Harb. Symp. quant. Biol. 30, 1–13 (1965).

    CAS  Google Scholar 

  • Hartline, H. K.: Intensity and duration in the excitation of single photoreceptors. J. cell, comp. Physiol. 5, 229–274 (1934).

    Article  Google Scholar 

  • Wagner, H. G., MacNichol, E. F.: The peripheral origin of nervous activity in the visual system. Cold Spr. Harb. Symp. quant. Biol. 17, 125–141 (1952).

    CAS  Google Scholar 

  • Hodgkin, A. L.: The local electric changes associated with repetitive action in a non-medullated axon. J. Physiol. (Lond.) 107, 165–181 (1948).

    CAS  Google Scholar 

  • — The ionic basis of electrical activity in nerve and muscle. Biol. Rev. 26, 339–409 (1951).

    Article  CAS  Google Scholar 

  • Huxley, A. F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.) 117, 500–544 (1952).

    CAS  Google Scholar 

  • Hubbard, S. J.: A study of rapid mechanical events in a mechano-receptor. J. Physiol. (Lond.) 141, 198–218 (1958).

    CAS  Google Scholar 

  • Kaneko, A., Hashimoto, H.: Recording site of the single cone response determined by an electrode marking technique. Vision Res. 7, 847–851 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Kaplan, W.: Ordinary differential equations. Reading: Addison and Wesley 1962.

    Google Scholar 

  • Katz, B.: Depolarizarion of sensory terminals and the initiation of impulses in the muscle spindle. J. Physiol. (Lond.) 111, 261–282 (1950).

    CAS  Google Scholar 

  • Katz, B., Miledi, R.: A study of synaptic transmission in the absence of nerve impulses. J. Physiol. (Lond.) 192, 407–436 (1967).

    CAS  Google Scholar 

  • Lasansky, A.: Cell junctions in ommatidia of Limulus. J. Cell Biol. 33, 365–383 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Liley, A. W.: The quantal components of the mammalian end-plate potential. J. Physiol. (Lond.) 133, 571–587 (1956).

    CAS  Google Scholar 

  • Loewenstein, W. R.: The generation of electric activity in a nerve ending. Ann. N. Y. Acad. Sci. 81, 367–387 (1959).

    Article  PubMed  CAS  Google Scholar 

  • — Facets of a transducer process. Cold Spr. Harb. Symp. quant. Biol. 30, 29–43 (1965).

    CAS  Google Scholar 

  • Mendelson, M.: Components of receptor adaptation in a pacinian corpuscle. J. Physiol. (Lond.) 177, 377–397 (1965).

    CAS  Google Scholar 

  • Terzuolo, C. A., Washizu, Y.: Separation of transducer and impulse generating processes in sensory receptors. Science 142, 1180–1181 (1963).

    Article  PubMed  CAS  Google Scholar 

  • MacNichol, E. F.: Visual receptors as biological transducers. In: Molecular structure and functional activity of nerve cells. Eds. Grenell, R. G., Mullins, L. J. Washington: Amer. Inst. Biol. Sci. 1956.

    Google Scholar 

  • Marimont, R.: Numerical studies of the Fuortes-Hodgkin Limulus model. J. Physiol. (Lond.) 179, 489–497 (1965).

    CAS  Google Scholar 

  • Matthews, B. H. C.: The response of single end organ. J. Physiol. (Lond.) 71, 64–110 (1931).

    CAS  Google Scholar 

  • — Do the rhythmic discharges of sense organs and of motor neurones originate in the same way? Proc. roy. Soc. (London) B. 123, 416–418 (1937).

    Google Scholar 

  • McReynolds, J. S., Gorman, A. L. F.: Photoreceptor potentials of opposite polarity in the eye of the scallop, Pecten irradians. J. gen. Physiol. 1970a (in press).

    Google Scholar 

  • — — Membrane conductances and spectral sensitivities of Pecten photoreceptors. J. gen. Physiol. 1970b (in press).

    Google Scholar 

  • Mendelson, M., Loewenstein, W. R.: Mechanisms of receptor adaptation. Science 144, 554–555 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Mountcastle, V. B.: The neural replication of sensory events in the somatic afferent system. In: Semaine d’étude sur cerveau et expérience consciente. Vatican City: Pontificia Academia Scientiarum 1965.

    Google Scholar 

  • Ottoson, D., Shepherd, G. M.: Receptor potentials and impulse generation in the isolated spindle during controlled extension. Cold Spr. Harb. Symp. quant. Biol. 30, 105–113 (1965).

    CAS  Google Scholar 

  • Rall, W.: Theoretical significance of dendritic trees for neuronal input-output relations. In: Neural theory and modeling. Ed. by Reiss, R. F. Stanford: Stanford Univ. Press 1964.

    Google Scholar 

  • Ramon y Cajal, S.: Histologie du systeme nerveux de l’homme et des vertébrés. Paris: Malone 1909–1911.

    Google Scholar 

  • Rushton, W. A. H.: The intensity factor in vision. In: Light and Life. Eds.: McElroy, W. D., Glass, B. Baltimore: Johns Hopkins Univ. Press 1961.

    Google Scholar 

  • Sobotta, J.: Handbuch der Mikroskopischen Anatomie des Menschen. Hrg. Müllendorf, W. von. Berlin: Springer 1928.

    Google Scholar 

  • Terzuolo, C. A., Washizu, Y.: Relation between stimulus strength, generator potential and impulse frequency in stretch receptor of Crustacea. J. Neurophysiol. 25, 56–66 (1962).

    PubMed  CAS  Google Scholar 

  • Thurm, U.: An insect mechanoreceptor. II. Receptor potentials. Cold Spr. Harb. Symp. quant. Biol. 30, 83–94 (1965).

    CAS  Google Scholar 

  • Tomita, T.: Electrophysiological study of the mechanisms subserving color coding in the fish retina. Cold Spr. Harb. Sympl quant. Biol. 30, 559–566 (1965).

    CAS  Google Scholar 

  • Toyoda, J., Nosaki, H., Tomita, T.: Light-induced resistance changes in photoreceptors of Necturus and Gekko. Vision Res. 9, 453–463 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Shapley, R. M.: The intracellularly recorded response in the scallop eye. Biol. Bull. 133, 490 (1967).

    Google Scholar 

  • Tucker, D., Shibuya, T.: A physiologic and pharmacologic study of olfactory receptors. Cold Spr. Harb. Symp. quant. Biol. 30, 207–215 (1965).

    CAS  Google Scholar 

  • Werblin, F. S., Dowling, J. E.: Organization of the retina of the mud puppy, Necturus maculosus. II. Intracellular recording. J. Neurophysiol. 32, 339–355 (1969).

    PubMed  CAS  Google Scholar 

  • Werner, G., Mountcastle, V.: Neural activity in mechanoreceptive cutaneous afferents: stimulus-response relations, Weber-functions and information transmission. J. Neurophysiol. 28, 359–397 (1965).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Springer-Verlag, Berlin · Heidelberg

About this chapter

Cite this chapter

Fuortes, M.G.F. (1971). Generation of Responses in Receptor. In: Loewenstein, W.R. (eds) Principles of Receptor Physiology. Handbook of Sensory Physiology, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-65063-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-65063-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-65065-9

  • Online ISBN: 978-3-642-65063-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics