Skip to main content

Formation of Neuronal Connections in Sensory Systems

  • Chapter
Principles of Receptor Physiology

Part of the book series: Handbook of Sensory Physiology ((SENSORY,volume 1))

  • 173 Accesses

Abstract

The development of peripheral sensory innervation and the formation of synaptic connections in sensory systems have attracted relatively little attention from neurophysiologists. This neglect may be due to the dominating preoccupation with impulse traffic and coding which few sensory physiologists have succeeded in escaping. The purpose of this review is to draw attention to the developmental mechanisms which result in the formation of connections in the nervous system, and which continue to maintain these connections throughout life. The main emphasis will be on the development of connections in sensory systems, but it is not always possible or desirable to remain within this narrow frame of reference. On the other hand, the whole problem of the development of neuronal connections is too large to deal with here. Other aspects of that problem are considered in recent reviews (Székely, 1966; Gaze, 1967; Jacobson, 1967a).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adrian, E. D., Cattell, M., Hoagland, H.: Sensory discharges in single cutaneous nerve fibers. J. Physiol. (Lond.) 72, 377–391 (1931).

    CAS  Google Scholar 

  • Arora, H. L., Sperry, R. W.: Optic nerve regeneration after surgical cross-union of medial and lateral tracts. Amer. Zoologist 2, 610 (1962).

    Google Scholar 

  • Attardi, D. G., Sperry, R. W.: Preferential selection of central pathways by regenerating optic fibers. Exp. Neurol. 7, 46–64 (1963).

    PubMed  CAS  Google Scholar 

  • Baglioni, S.: Die Hautreflexe der Amphibien. Ergebn. Physiol. 13, 454–546 (1913).

    Google Scholar 

  • Beidler, L. M.: Dynamics of taste cells. In: Olfaction and Taste. Zotterman, Y. (ed.). Oxford: Pergamon 1963.

    Google Scholar 

  • — Smallman, R. L.: Renewal of cells within taste buds. J. Cell Biol. 27, 263–272 (1965).

    PubMed  CAS  Google Scholar 

  • Boeke, J.: Studien zur Nervenregeneration. II. Die Regeneration nach Vereinigung ungleichartiger NervenstĂĽcke (heterogene Regeneration), und die Funktion der Augenmuskel- und und Zungennerven, Die Allgemeinen Gesetze der Nervenregeneration. Verhandel. Koninkl. Akad. Wetenschap. Amsterdam (Afdeel. Naturk.) 19, 1–71 (1917).

    Google Scholar 

  • Braus, H.: Experimentelle Beiträge zur Frage nach der Entwicklung peripherer Nerven. Anat. Anz. 26, 433–479 (1905).

    Google Scholar 

  • Brown, A. G., Iggo, A.: The structure and function of cutaneous touch corpuscles after nerve crush. J. Physiol. (Lond.) 165, 28–29 (1962).

    Google Scholar 

  • Bullough, W. S., Laurence, E. B.: The control of epidermal mitotic activity in the mouse. Proc. roy. Soc. Lond. B. 151, 517–536 (1959).

    Google Scholar 

  • — — Mitotic control by internal secretion: The role of the chalone-adrenalin complex. Exp. Cell Res. 33, 176–194 (1964).

    PubMed  CAS  Google Scholar 

  • — — Iversen, O. H., Elgjo, K.: The vertebrate epidermal chalone. Nature (Lond.) 214, 578–580 (1967).

    CAS  Google Scholar 

  • Catton, W. T.: Some properties of frog skin mechanoreceptors. J. Physiol. 141, 305–322 (1958).

    PubMed  CAS  Google Scholar 

  • Cowdry, E. V.: The skin. In: Special cytology. 2. ed. New York: Hoeber 1932.

    Google Scholar 

  • DeLong, R. G., Coulombre, A. J.: The specificity of retino-tectal connections studied by retinal grafts onto the optic tectum in chick embryos. Develop. Biol. 16, 513–531 (1968).

    Google Scholar 

  • Detwiler, S. R.: Experiments on the transplantation of limbs in Amblystoma. The formation of nerve plexuses and the function of the limbs. J. Exp. Zool. 31, 117–169 (1920).

    Google Scholar 

  • — Coordinated movements in supernumerary transplanted limbs. J. comp. Neurol. 38, 461 (1925).

    Google Scholar 

  • — Neuroembryology. An Experimental Study. New York: Macmillan 1936.

    Google Scholar 

  • Dijkstra, C.: Die De- und Regeneration der sensiblen Endkörperchen des Entenschnabels (Grandry- und Herbst-Körperchen) nach Durchschneidung des Nerven, nach Fortnahme der ganzen Haut und nach Transplantation des HautstĂĽckchens. Z. mikr.-anat. Forsch. 34, 75–158 (1933).

    Google Scholar 

  • Ebert, J. D., Kaigkn, M. E.: The keys to change: Factors regulating differentiation. In: Major problems in developmental dibiology. Locke, M. (Ed.). New York: Academic Press Inc. 1966.

    Google Scholar 

  • Eccles, J. C., Eccles, R. M., Lundberg, A.: Types of neurones in and around the intermediate nucleus of the lumbo-sacral cord. J. Physiol. (Lond.) 154, 89–114 (1960).

    CAS  Google Scholar 

  • — — — Magni, F.: Monosynaptic excitatory action on motoneurons regenerated to antagonistic muscles. J. Physiol. (Lond.) 154, 68–88 (1960).

    CAS  Google Scholar 

  • — — Shealy, C. M.: An investigation into the effect of degenerating primary afferent fibers on the monosynaptic innervation of motoneurons. J. Neurophysiol. 25, 544–558 (1962a).

    PubMed  CAS  Google Scholar 

  • — — — Willis, W. D.: Experiments utilizing monosynaptic excitatory action on motoneurons for testing hypothesis relating to specificity of neuronal connections. J. Neurophysiol. 25, 559–580 (1962b).

    PubMed  CAS  Google Scholar 

  • — Lundberg, A.: Integrative pattern of Ia synaptic actions on motoneurons of hip and knee muscles. J. Physiol. (Lond.) 144, 271–298 (1958).

    CAS  Google Scholar 

  • Edds, M. V.: Collateral regeneration of residual motor axons in partially denervated muscles. J. Exp. Zool. 113, 517–552 (1950).

    Google Scholar 

  • — Collateral nerve regeneration. Quart. Rev. Biol. 28, 260–276 (1953).

    PubMed  Google Scholar 

  • Eisenberg, S., Yamada, T.: A study of DNA synthesis during the transformation of the iris into lens in the lentectomized newt. J. Exp. Zool. 162, 353–368 (1966).

    Google Scholar 

  • Fitzgerald, M. J. T.: Developmental changes in epidermal innervation. J. Anat. (Lond.) 95, 495–514 (1961).

    CAS  Google Scholar 

  • — On the structure and life history of bulbous corpuscles (corpuscula nervorum terminalia bulboidea). J. Anat. (Lond.) 96, 189–208 (1962).

    CAS  Google Scholar 

  • Franzisket, L.: Characteristics of instinctive behavior and learning reflex activity of the frog. Anim. Behav. 11, 318–324 (1963).

    Google Scholar 

  • Gaze, R. M.: Regeneration of the optic nerve in amphibia. Int. Rev. Neurobiol. 2, 1–40 (1960).

    PubMed  CAS  Google Scholar 

  • — Growth and differentiation. Ann. Rev. Physiol. 29, 59–86 (1967).

    CAS  Google Scholar 

  • — Jacobson, M.: A study of the retino-tectal projection during regeneration of the optic nerve in the frog. Proc. roy. Soc. B. 157, 420–448 (1963).

    Google Scholar 

  • Guth, L.: Taste buds on the cat’s circumvallate papilla afer reinnervation by glosso-pharyngeal, vagus, and hypoglossal nerves. Anat. Rec. 130, 25–38 (1958).

    PubMed  CAS  Google Scholar 

  • — Histological changes following denervation of the circumvallate papilla of the rat. Exp. Neurol. 8, 336–349 (1963).

    Google Scholar 

  • Gutman, E.: Reinnervation of muscle by sensory nerve fibers. J. Anat. (Lond.) 79, 1–7 (1945).

    Google Scholar 

  • Harkmark, W.: Cell migrations from the rhombic lip to the inferior olive, the nucleus raphe and the pons. A morphological and experimental investigation on chick embryos. J. comp. Neurol. 100, 115–209 (1954).

    PubMed  CAS  Google Scholar 

  • Hibbard, E.: Innervation of intrinsic limb musculature by cranial nerves in Pleurodeles waltlii. Anat. Rec. 151, 360–361 (1965).

    Google Scholar 

  • — Visual recovery following regeneration of the optic nerve through oculomotor nerve root in Xenopus. Exp. Neurol. 19, 350–356 (1967).

    PubMed  CAS  Google Scholar 

  • Hoffman, H.: Local re-innervation in partially denervated muscle: A histo-physiological study. Austr. J. exp. Biol. med. Sci. 28, 383–397 (1950).

    CAS  Google Scholar 

  • — Springell, P. H.: An attempt at the chemical identification of “neurocletin” (the substance evoking axon-sprouting). Aust. J. exp. Biol. med. Sci. 29, 417–424 (1951).

    PubMed  CAS  Google Scholar 

  • Högland, D., Lindblom, U.: The discharge in single touch receptors elicited by defined mechanical stimuli. Acta physiol. scand. 52, 108–119 (1961).

    Google Scholar 

  • Jacobson, M.: The representation of the retina on the optic tectum of the frog. Correlation between retinotectal magnification factor and retinal ganglion cell count. Quart. J. Exp. Physiol. 47, 170–178 (1962).

    PubMed  CAS  Google Scholar 

  • — Starting points for research in the ontogeny of behavior. In: Major problems in developmental biology. Locke, M., ed. New York: Academic Press Inc. 1967a.

    Google Scholar 

  • Jacobson, M.: Retinal ganglion cells: specification of central connections in larval Xenopus laevis. Science 155, 1106–1108 (1967b).

    PubMed  CAS  Google Scholar 

  • — Development of neuronal specificity in retinal ganglion cells of Xenopus. Develop. Biol. 17, 202–208 (1968a).

    PubMed  CAS  Google Scholar 

  • — Cessation of DNA-synthesis in retinal ganglion cells correlated with the time of specification of their central connections. Develop. Biol. 17, 219–232 (1968b).

    PubMed  CAS  Google Scholar 

  • — Specification of neuronal connections during development. In: Physiological and biochemical aspects of nervous integration. Carlson, F. C. Ed. Englewood Cliffs, N. J.: Prentice Hall 1968 c.

    Google Scholar 

  • — Baker, R. E.: Neuronal specification of cutaneous nerves through connection with skin in the frog. Science 160, 543–545 (1968).

    PubMed  CAS  Google Scholar 

  • — Gaze, R. M.: Selection of appropriate tectal connections by regenerating optic nerve fibers in adult goldfish. Exp. Neurol. 13, 418–430 (1965).

    PubMed  CAS  Google Scholar 

  • Kadanoff, D.: Untersuchungen ĂĽber die Regeneration der sensiblen Nervenendigungen nach Vertauschung verschieden innervierter HautstĂĽcke. Arch. Entwickl.-Mech. Org. 106, 249–278 (1925).

    Google Scholar 

  • Kollros, J. J.: Experimental studies on the development of the corneal reflex in amphibia. III. The influence of the periphery upon the reflex center. J. Exp. Zool. 92, 121–142 (1943).

    Google Scholar 

  • Lindblom, U.: The relation between stimulus and discharge in a rapidly adapting touch receptor. Acta physiol. scand. 56, 349–361 (1962).

    Google Scholar 

  • — Phasic and static excitability of touch receptors in toad skin. Acta physiol. scand. 59, 410–423 (1963).

    PubMed  CAS  Google Scholar 

  • Livingston, W. K.: Evidence of active invasion of denervated areas by sensory fibers from neighboring nerves in man. J. Neurosurg. 4, 140–145 (1947).

    PubMed  CAS  Google Scholar 

  • Loewenstein, W. R.: Excitation and changes in adaptation by stretch of mechanoreceptors. J. Physiol. (Lond.) 133, 588–602 (1956).

    CAS  Google Scholar 

  • Lubinska, L.: Axoplasmic streaming in regenerating and in normal nerve fibres. In: Progress in brain research. Vol. 13: Mechanisms of Neural Regeneration. Singer, M., SchadĂ©, J. P., (Eds.). Amsterdam: Elsevier 1964.

    Google Scholar 

  • Luco, J. V., Eyzaguirre, C.: Fibrillation and hypersensitivity to ACh in denervated muscle: Effect of length of degenerating nerve fibres. J. Neurophysiol. 18, 65–73 (1955).

    PubMed  CAS  Google Scholar 

  • Mäkelä, D., Nossal, G. J. V.: Autoradiographic studies of the immune response, II. DNA-synthesis among single antibody-producing cells. J. Exp. Med. 115, 231–243 (1962).

    PubMed  Google Scholar 

  • Mark, R. F.: Fin movements after regeneration of neuromuscular connections: an investigation of myotypic specificity. Exp. Neurol. 12, 292–320 (1965).

    Google Scholar 

  • — Campenhausen, G. von. Lischinsky, D. J.: Nerve-muscle relations in salamander: possible relevance to nerve regeneration and muscle specificity. Exp. Neurol. 16, 438–449 (1966).

    PubMed  CAS  Google Scholar 

  • Maruhashi, J., Mizuguchi, K., Tasaki, T.: Action currents in single afferent nerve fibers elicited by stimulation of the skin of the toad and the cat. J. Physiol. (Lond.) 117, 129–151 (1952).

    CAS  Google Scholar 

  • Maturana, H. R., Lettvin, J. Y., McCulloch, W. S., Pitts, W. H.: Evidence that cut optic nerve fibers in a frog regenerate to their proper places in the tectum. Science 130, 1709 to 1710 (1959).

    Google Scholar 

  • — — — — Anatomy and physiology of vision in the frog (Rana pipiens). J. gen. Physiol. Suppl. 43, 129–175 (1960).

    Google Scholar 

  • May, R. M.: The relation of nerves to degenerating and regenerating taste buds. J. Exp. Zool. 42, 371–410 (1925).

    Google Scholar 

  • Miner, N.: Cutaneous localization following 180° rotation of skin grafts. Anat. Rec. 109, 326–327 (1951).

    Google Scholar 

  • — Integumental specification of sensory fibers in the development of cutaneous local sign. J. comp. Neurol. 105, 161–170 (1956).

    PubMed  CAS  Google Scholar 

  • Nicholas, J. S.: The correlation of movement and nerve supply in transplanted limbs of Amblystoma. J. comp. Neurol. 57, 253–283 (1933).

    Google Scholar 

  • Oakley, B.: Altered temperature and taste responses from cross-regenerated sensory nerves in the rats’ tongue. J. Physiol. (Lond.) 188, 353–371 (1967).

    CAS  Google Scholar 

  • Okasaki, K., Holtzer, H.: Analysis of myogenesis in vitro using fluorescein-labeled anti-myosin. J. Histochem. Cytochem. 13, 726–739 (1965).

    Google Scholar 

  • Olmsted, J. M. D.: The nerve as a formative influence in the development of taste-buds. J. comp. Neurol. 31, 465–468 (1920a).

    Google Scholar 

  • — The results of cutting the seventh cranial nerve in Ameiurus nebulosus (Lesueur). J. Exp. Zool. 31, 369–401 (1920b).

    Google Scholar 

  • Parker, G. H.: On the trophic impulse so-called, its rate and nature. Am. Naturalist 66, 147–158 (1932).

    Google Scholar 

  • — Paine, V. L.: Progressive nerve degeneration and its rate in the lateral-line nerve of the catfish. Amer. J. Anat. 54, 1–25 (1934).

    Google Scholar 

  • Piatt, J.: A study of nerve-muscle specificity in the forelimb of Triturus pyrrhogaster. J. Morph. 65, 155–185 (1939).

    Google Scholar 

  • — Transplantation of aneurogenic forelimbs in Amblystoma punctatum. J. Exp. Zool. 91, 79–101 (1942).

    Google Scholar 

  • — Studies on the problem of nerve pattern. II. Innervation of the intact forelimb by different parts of the central nervous system in Amblystoma. J. Exp. Zool. 134, 103–125 (1957).

    PubMed  CAS  Google Scholar 

  • Poritsky, R. L., Singer, M.: The fate of taste buds in tongue transplants to the orbit in urodele. Triturus. J. Exp. Zool. 153, 211–218.

    Google Scholar 

  • Quilliam, T. A., Armstrong, J.: Structural and denervation studies of the Herbst corpuscle. In: Cytology of nervous tissue. Proc. Anat. Soc. Great Britain 1961.

    Google Scholar 

  • RamĂłn y Cajal, S.: AcciĂłn neurotrĂłpica de los epitelios (Algunas datalles sobre el mecanismo genetico de las ramificaciones nerviosas intra-epiteliales, sensitivas y sensoriales)). Trab. Lab. Invest. Biol. Univ. Madrid 17, 181–228 (1919).

    Google Scholar 

  • — Degeneration and Regeneration of the Nervous System. Transl, by May, R. M. New York: Hafner Publication Co. 1959.

    Google Scholar 

  • Robbins, N.: The role of the nerve in maintenance of frog taste buds. Exp. Neurol. 17, 364–38 (1967a).

    PubMed  CAS  Google Scholar 

  • — Peripheral modification of sensory nerve responses after cross-regeneration. J. Physiol. (Lond.) 192, 493–504 (1967b).

    CAS  Google Scholar 

  • SaxĂ©n, L., Toivonen, S.: Primary embryonic induction. London: Logos Press 1962.

    Google Scholar 

  • Speidel, C. C.: Adjustments of nerve endings Harvey Lect. 36, 126–158 (1941).

    Google Scholar 

  • — Correlated studies of sense organs and nerves of the lateral-line im living frog tadpoles. IV. Patterns of vagus nerve regeneration after single and multiple operations. Amer. J. Anat. 114, 133–160 (1964).

    PubMed  CAS  Google Scholar 

  • Sperry, R. W.: The effect of crossing nerves to antagonistic muscles in the hindlimb of the rat. J. comp. Neurol. 75, 1–19 (1941).

    Google Scholar 

  • — Optic nerve regeneration with return of vision in anurans. J. Neurophysiol. 7, 57–69 (1944).

    Google Scholar 

  • — The problem of central nervous reorganization after nerve regeneration and muscle transposition. Quart. Rev. Biol. 20, 311–369 (1945a).

    PubMed  CAS  Google Scholar 

  • — Restoration of vision after crossing of optic nerves and after contralateral transplantation of the eye. J. Neurophysiol. 8, 15–28 (1945b).

    Google Scholar 

  • — Neuronal specificity. In: Genetic Neurology. Ed. by Weiss, P. Chicago: Univ. Chicago Press 1950.

    Google Scholar 

  • — Mechanisms of neural maturation. In: Handbook of experimental psychology. Ed. by Stevens, S. s. New York: John Wiley & Sons, Inc. 1951a

    Google Scholar 

  • — Regulative factors in the orderly growth of neural circuits. Growth Symp. 10, 63–87 (1951b).

    Google Scholar 

  • — Chemoaffinity in the orderly growth of nerve fiber patterns. Proc. nat. Acad. Sci. (Wash.) 50, 703–710 (1963).

    CAS  Google Scholar 

  • — Embryogenesis of behavioral nerve nets. pp. 161–186. In: Organogenesis. Dehaan, R. L., Ursprung, H., Eds. New York: Holt, Rinehart & Winston 1965.

    Google Scholar 

  • — Selective communication in nerve nets: impulse specificity vs. connection specificity. In: Neuroscience Res. Symp. Summaries, Schmitt, F. O., Melnechuk, T., Eds. Cambridge, Mass.: M. I. T. Press 1966.

    Google Scholar 

  • — Miner, N.: Formation within sensory nucleus V of synaptic associations mediating cutaneous localization. J. comp. Neurol. 90, 403–423 (1949).

    PubMed  CAS  Google Scholar 

  • Stockdale, F. E., Holtzer, H.: DNA-synthesis and myogenesis. Exp. Cell Res. 24, 508–526 (1961).

    PubMed  CAS  Google Scholar 

  • Stone, L. S.: The origin and development of taste organs in salamander observed in the living condition. J. Exp. Zool. 83, 481–506 (1940).

    Google Scholar 

  • — Functional polarization in retinal development and its reestablishment in regenerated retinae of rotated eyes. Proc. Soc. exp. Biol. Med. 57, 13–14 (1944).

    Google Scholar 

  • — Functional polarization in the developing retinae of transplanted eyes. Ann. N. Y. Acad. Sci. 49, 856–865 (1948).

    PubMed  CAS  Google Scholar 

  • — Polarization of the retina and development of vision. J. Exp. Zool. 145, 85–93 (1960).

    Google Scholar 

  • Straus, W. L.: The concept of nerve-muscle specificity. Biol. Rev. 21, 75–91 (1946).

    PubMed  Google Scholar 

  • SzĂ©kely, G.: Zur Ausbildung der lokalen funktionellen Spezifität der Retina. Acta biol. Acad. Sci. Hung. 5, 157–167 (1954).

    Google Scholar 

  • — The apparent “corneal specificity” of sensory neurons. J. Embryol. exp. Morph. 7, 375–379 (1959).

    PubMed  Google Scholar 

  • — Embryonic determination of neural connections. Advanc. Morphogenes 5, 181–219 (1966).

    Google Scholar 

  • — Czeh, G.: Localization of motoneurons in the limb moving spinal cord segments of Ambystoma. Acta physiol. Acad. Sci. hung. 32, 3–18 (1967).

    PubMed  Google Scholar 

  • — Szentágothai, J.: Reflex and behavior patterns elicited from implanted supernumerary limbs in the chick. J. Embryol. exp. Morph. 10, 140–151 (1962).

    Google Scholar 

  • Taylor, A. C.: Selectivity of nerve fibers from the dorsal and ventral roots in the development of the frog limb. J. Exp. Zool. 96, 159–185 (1944).

    Google Scholar 

  • — Kollros, J. J.: Stages in the normal development of Rana pipiens larvae. Anat. Rec. 94, 7–23 (1946).

    PubMed  CAS  Google Scholar 

  • Tello, J. F.: Contribution Ă  la connaissance des terminaisons sensitives dans les organes gĂ©nitaux externes et de leur developpement. Trab. Lab. Invest. Biol. Univ. Madrid 28, 1–58 (1932).

    Google Scholar 

  • Tiegs, O. W.: Innervation of voluntary muscle. Physiol. Rev. 3, 90–144 (1953).

    Google Scholar 

  • Toto, P. D., Ojha, G.: Generation cycle of oral epithelium in mice. J. Dent. Res. 41, 388 (1962).

    Google Scholar 

  • Verzár, F., Weiss, P. A.: Untersuchungen ĂĽber das Phänomen der identischen Bewegungsfunktion mehrfacher benachbarter Extremitäten. PflĂĽgers Arch. ges. Physiol. 223, 671–684 (1930).

    Google Scholar 

  • Vintschgau, M. von: Beobachtungen ĂĽber die Veränderungen der Schmeckbecher nach Durchschneidung des N. glossopharyngeus. PflĂĽgers Arch. ges. Physiol. 23, 1–13 (1880).

    Google Scholar 

  • — Honigschmied, J.: Nervus glossopharyngeus und Schmeckbecher. PflĂĽgers Arch. ges. Physiol. 14, 443–448 (1876).

    Google Scholar 

  • Walker, B. E.: Renewal of cell populations in the female mouse. Amer. J. Anat. 107, 95–105 (1960).

    PubMed  CAS  Google Scholar 

  • Wedell, G., Guttmann, L., Gutmann, E.: The local extension of nerve fibers into denervated areas of skin. J. Neurol. Pschiat. 4 (N. S.), 206–225 (1941).

    Google Scholar 

  • Weiss, P.: Die Funktion transplantierter Amphibienextremitäten. Aufstellung einer Resonanztheorie der Motorischen Nerventätigkeit auf Grund abgestimmter Endorgane. Arch. Entwickl.-Mech. Org. 102, 635–672 (1924).

    Google Scholar 

  • — Erregungspecifität und Erregungsresonanz. Ergebn. Biol. 3, 1–151 (1928).

    Google Scholar 

  • — Das Resonanzprinzip der Nerventätigkeit. Wien. klin. Wschr. 39, 1–17 (1931).

    Google Scholar 

  • — In vitro experiments on the factors determining the course of the outgrowing nerve fiber. J. Exp. Zool. 68, 393–448 (1934).

    Google Scholar 

  • — Selectivity controlling the central -perpheral relations in the nervous system. Biol. Rev. 11, 494–531 (1936).

    Google Scholar 

  • — Lid-closure reflex from eyes transplanted to atypical locations in Triturus torosus: Evidence of a peripheral origin of sensory specificity. J. comp. Neurol. 77, 131–169 (1942).

    Google Scholar 

  • — Central versus peripheral factors in the development of coordination. Res. Publ. Ass. nerv. ment. Dis. 30, 3–23 (1952).

    CAS  Google Scholar 

  • — Edds, M. V.: Sensory-motor nerve crosses in the rat. J. Neurophysiol. 8, 173–193 (1945).

    Google Scholar 

  • — Taylor, A. C.: Further experimental evidence against “neurotropism” in nerve regeneration. J. Exp. Zool. 95, 233–257 (1944).

    Google Scholar 

  • Weiss, P. A.: Specificity in the neurosciences. In: Neuroscience Res. Symp. Summaries. Eds.: Schmitt, F. O., Melnechuk, T. Cambridge, Mass.: M. I. T. Press 1966.

    Google Scholar 

  • Wenger, E. L.: An experimental analysis of the relations between parts of the brachial spinal cord of the embryonic chick. J. Exp. Zool. 114, 51–85 (1950).

    Google Scholar 

  • Wessels, N. K.: DNA synthesis, mitosis, and differentiation in pancreatic acinar cells in vitro. J. Cell Biol. 20, 415–434 (1963).

    Google Scholar 

  • — Tissue interactions and cytodifferentiation. J. Exp. Zool. 157, 139–152 (1964).

    Google Scholar 

  • Wiersma, C. A. G.: An experiment on the “resonance theory” of muscular activity. Arch. neer. Physiol. 16, 337–345 (1931).

    Google Scholar 

  • Yamada, T.: Control of tissue specificity: the pattern of cellular synthetic activities in tissue transformation. Am. Zoologist 6, 21–31 (1966).

    CAS  Google Scholar 

  • Zelená, J.: Development, degeneration and regeneration of receptor organs. Progr. Brain Kes. 13, 175–211 (1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Jacobson, M. (1971). Formation of Neuronal Connections in Sensory Systems. In: Loewenstein, W.R. (eds) Principles of Receptor Physiology. Handbook of Sensory Physiology, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-65063-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-65063-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-65065-9

  • Online ISBN: 978-3-642-65063-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics