Skip to main content

The General Electrophysiology of Input Membrane in Electrogenic Excitable Cells

  • Chapter
Principles of Receptor Physiology

Part of the book series: Handbook of Sensory Physiology ((SENSORY,volume 1))

Abstract

The general electrophysiology of sensory receptors is concerned basically with the mechanisms by which changes in the environment are transformed (transduced) into a language that is intelligible to the nervous system. To satisfy this function, the signals transported by the sensory neuron must carry a reasonable facsimile of the information that was received (sensed) at the input. They must also be capable of propagation, including the capacity for transmission from one cell to another in the synaptic and/or ephaptic chains of the nervous system. In this context, the principles of the general electrophysiology of sensory receptors can be encompassed within the varieties of activity that bring the sensory data into the nervous system via the individual sensory neuron. The various requirements for specificity of the information and for its modulation with respect to stimulus conditions or states of the organism generally involve large assemblies of neurons. Although these functions are vital to the total behavioral reactions of the animal to the primary stimulus, they are of secondary importance in the present context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beidler, L. M.: Comparison of gustatory receptors, olfactory receptors, and free nerve endings. Cold Spr. Harb. Symp. quant. Biol. 30, 191–200 (1965).

    CAS  Google Scholar 

  • — Smallman, R.: Renewal of cells within taste buds. J. Cell Biol. 27, 263–272 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Bennett, M. V. L.: Physiology of electronic junctions. Ann. N.Y. Acad. Sci. 37, 509–539 (1966).

    Article  Google Scholar 

  • — Mechanisms of electroreception. In: Lateral line detectors. Bloomington: Indiana Univ. Press 1967.

    Google Scholar 

  • — Aljure, E., Nakajima, Y., Pappas, G. D.: Electrotonic junctions between teleost spinal neurons: electrophysiology and ultrastructure. Science 141, 262–264 (1963).

    Article  PubMed  CAS  Google Scholar 

  • — Nakajima, Y., Pappas, G. D.: Physiology and ultrastructure of electrotonic junctions. I. The supramedullary neurons. J. Neurophysiol. 30, 161–179 (1967a).

    PubMed  CAS  Google Scholar 

  • — — — Physiology and ultrastructure of electrotonic junctions. III. The giant electromotor neurons of Malapterurus electricus. J. Neurophysiol. 30, 209–235 (1967b).

    PubMed  CAS  Google Scholar 

  • — Pappas, G. D., Aljure, E., Nakajima, Y.: Physiology and ultrastructure of electrotonic junctions. II. Spinal and medullary electromotor nuclei in mormyrid fish. J. Neurophysiol. 30, 180–208 (1967c).

    PubMed  CAS  Google Scholar 

  • — — Gimenez, M., Nakajima, Y.: Physiology and ultrastructure of electrotonic junctions. IV. Medullary pacemaker and relay nuclei of the electromotor system of the gymnotid fish. J. Neurophysiol. 30, 236–300 (1967c).

    PubMed  CAS  Google Scholar 

  • Benolken, R. M., Russell, C. J.: Dissection of a graded visual response with tetrodotoxin. In: The functional organization of the compound eye. London: Pergamon Press 1966.

    Google Scholar 

  • Bethe, A.: Das Zentralnervensystem von Carduus maenas. Arch. f. Mikr. Anat. 50, 589–634 (1897).

    Article  Google Scholar 

  • Bloedel, J., Gage, P. W., Llinas, R., Quastel, D. M. J.: Transmitter release at the squid giant synapse in the presence of tetrodotoxin. Nature (Lond.) 212, 49–50 (1966).

    Article  CAS  Google Scholar 

  • Boeckh, J., Kaissling, K. E., Schneider, D.: Insect olfactory receptors. Cold Spr. Harb. Symp. quant. Biol. 30, 263–280 (1965).

    CAS  Google Scholar 

  • Borsellino, A., Fuortes, M. G. F., Smith, T. G.: Visual responses in Limulus. Cold Spr. Harb. Symp. quant. Biol., 30, 429–443 (1965).

    CAS  Google Scholar 

  • Brown, K. T., Wiesel, T. N.: Intraretinal recording with micropipette electrodes in the intact cat eye. J. Physiol. 149, 537–562 (1959).

    PubMed  CAS  Google Scholar 

  • Clark, A. W., Millechia, R., Mauro, A.: The ventral photoreceptor cells of Limulus. I. The microanatomy. J. gen. Physiol. 54, 289–309 (1969).

    Article  CAS  Google Scholar 

  • Cohen, M. J.: The crustacean myochordotonal organ as a proprioceptive system. Comp. Biochem. Physiol. 8, 223–243 (1963).

    Google Scholar 

  • Cone, R. A., Pak, W. L.: The early receptor potential. In: Handbook of sensory physiology, vol. I, pp. 345–365. Berlin-Heidelberg-New York: Springer 1971.

    Google Scholar 

  • Davis, H.: Some principles of sensory receptor action. Physiol. Rev. 41, 391–416 (1961).

    PubMed  CAS  Google Scholar 

  • — A model for transducer action in the Cochlea. Cold Spr. Harb. Symp. quant. Biol. 30, 181–190 (1965).

    CAS  Google Scholar 

  • Davis, L., Jr., LorentedeNo, R.: Contribution to the mathematical theory of the electrotonus. In: A study of nerve physiology. New York: Studies from the Rockefeller Inst. Vol. 131, 1947.

    Google Scholar 

  • DeLorenzo, A. J. D.: Studies on the ultrastructure and histophysiology of cell membranes, nerve fibers and synaptic junctions in chemoreceptors. In: Olfaction and taste. New York: Pergamon Press 1963.

    Google Scholar 

  • Dethier, V. G.: Vision. In: Insect physiology. New York: John Wiley & Sons. Inc. 1953.

    Google Scholar 

  • — The physiology of insect senses. London: Methner 1963.

    Google Scholar 

  • Dijkgraaf, S.: Biological significance of the lateral line organs. In: Lateral line detectors. Bloomington: Indian Univ. Press 1967.

    Google Scholar 

  • Dowling, J. E.: Discrete potentials in the dark-adapted eye of the crab Limulus. Nature (Lond.) 217, 28–31 (1968).

    Article  CAS  Google Scholar 

  • — Boycott, B. B.: Neural connections of the retina: fine structure of the inner plexiform layer. Cold Spr. Harb. Symp. quant. Biol. 30, 393–402 (1965).

    CAS  Google Scholar 

  • Dudel, J.: Presynaptic and postsynaptic effects of inhibitory drugs on the crayfish neuromuscular junction. Pflügers Arch. ges. Physiol. 283, 104–118 (1965).

    Article  CAS  Google Scholar 

  • Eccles, J. C.: The physiology of synapses. Berlin Göttingen-Heidelberg-New York: Springer 1964.

    Book  Google Scholar 

  • Edwards, C., Ottoson, D.: The site of impulse initiation in a nerve cell of a crustacean stretch receptor. J. Physiol. (Lond.) 143, 138–148 (1958).

    CAS  Google Scholar 

  • — Terzuolo, C. A., Washizu, Y.: The effect of changes of the ionic environment upon an isolated crustacean sensory neuron. J. Neurophysiol. 26, 948–957 (1963).

    PubMed  CAS  Google Scholar 

  • Elmquist, D., Feldman, D. S.: Spontaneous activity at a mammalian neuromuscular junction in tetrodotoxin. Acta physiol. scand. 64, 475–477 (1965).

    Article  Google Scholar 

  • Epstein, E., Grundfest, H.: Desensitization of Gamma Aminobutyric Acid (GABA) Receptors in Muscle Fibers of the Crab, Cancer borealis. J. gen. Physiol. 56, 33–45 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Eyzaguirre, C., Koyano, H.: Origin of sensory discharges in carotid body chemoreceptors. Cold Spr. Harb. Symp. quant. Biol. 30, 227–231 (1965).

    CAS  Google Scholar 

  • Farbman, A. I.: Fine structure of the taste bud. J. Ultrastruct. Res. 12, 328–350 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Farquhar, M. G., Palade, G. E.: Junctional complexes in various epithelia. J. Cell Biol. 17, 375–412 (1963).

    Article  PubMed  CAS  Google Scholar 

  • Fetz, E. E.: Pyramidal tract effects on interneurons in the cat lumbar dorsal horn. J. Neurophysiol. 31, 69–80 (1968).

    PubMed  CAS  Google Scholar 

  • Flock, Ã….: Ultrastructure and function in the lateral line organs. In: Lateral line detectors. Bloomington: Indiana Univ. Press 1967.

    Google Scholar 

  • — Sensory transduction in hair cells. In: Handbook of sensory physiology, vol. I, pp. 396–441. Berlin-Heidelberg-New York: Springer 1971.

    Google Scholar 

  • Fuortes, M. G. F.: Generation of responses in receptor. In: Handbook of sensory physiology, vol. I, pp. 243–268. Berlin-Heidelberg-New York: Springer 1971.

    Google Scholar 

  • Furukawa, T., Ishii, Y.: Effects of static bending of sensory hairs on sound reception in the gooldfish. Japan. J. Physiol. 17, 572–588 (1967a).

    Article  CAS  Google Scholar 

  • — Neurophysiological studies on hearing in goldfish. J. Neurophysiol. 30, 1377–1403 (1967b).

    PubMed  CAS  Google Scholar 

  • Goldman, D. E.: The transducer action of mechanoreceptor membranes. Cold Spr. Harb. Symp. quant. Biol. 30, 59–68 (1965).

    CAS  Google Scholar 

  • Grampp, W.: The impulse activity in different parts of the slowly adapting stretch receptor neuron of the lobster. Acta physiol. scand. 66, Suppl. 262, 1–36 (1966).

    Google Scholar 

  • Granit, R.: Receptors and sensory perception. New Haven: Yale Univ. Press 1955.

    Google Scholar 

  • Grundfest, H.: The nature of the electrochemical potentials of bioelectric tissues. In: Electrochemistry in biology and medicine. New York: John Wiley Sons, Inc. 1955.

    Google Scholar 

  • — Electrical inexcitability of synapses and some of its consequences in the central nervous system. Physiol. Rev. 37, 337–361, (1957a).

    PubMed  CAS  Google Scholar 

  • — Excitation triggers in post-junctional cells. In: Physiological triggers. Washington, D. C.: Amer. Physiol. Society 1957 b.

    Google Scholar 

  • — The mechnisms of discharge of the electric organs in relation to general and comparative electrophysiology. Progr. Biophys. 7, 1–85 (1957c).

    CAS  Google Scholar 

  • — General problems of drug action on bioelectric phenomena. Ann. N. Y. Acad. Sci. 66, 537–591 (1957d).

    Article  PubMed  CAS  Google Scholar 

  • — An electrophysiological basis for cone vision in fish. Arch. ital. Biol. 96, 135–144 (1958 a)

    Google Scholar 

  • — Discussion. In: Electrophysiology of the visual system. Amer. J. Ophthal. 46, II, 43–46 (1958b).

    Google Scholar 

  • —: Electrophysiology and pharmacology of dendrites. Electroenceph. Clin. Neurophysiol. Suppl. 10, 22–41 (1958c).

    Google Scholar 

  • — Synaptic and ephaptic transmission. In: Handbook of Physiology: Neurophysiology I. Washington, D. C.: Amer. Physiol. Soc. 1959a.

    Google Scholar 

  • Grundfest, H.: Evolution of conduction in the nervous system. In: Evolution of nervous control. Washington, D. C.: Amer. Ass. Advanc. Sci. 1959b.

    Google Scholar 

  • — Functional specifications for membranes in excitable cells. In: Regional neurochemistry. London: Pergamon Press 1961a.

    Google Scholar 

  • — General physiology and pharmacology of junctional transmission. In: Biophysics of physiological and pharmacological actions. Washington, D. C.: Amer. Ass. Advanc. Sci. 1961b.

    Google Scholar 

  • — Ionic mechanisms in electrogenesis. Amnn. N. Y. Acad. Sci. 94, 405–457 (1961c).

    Article  CAS  Google Scholar 

  • — Excitation by hyperpolarizing potentials. A general theory of receptor activities. In: Nervous inhibition. London: Pergamon Press 1961d.

    Google Scholar 

  • — Impulse conducting properties of cells. In: The general physiology of cell specialization. New York: McGraw-Hill Book Co., Inc. 1963.

    Google Scholar 

  • — Evolution of electrophysiological varieties among sensory receptor systems. In: Essays on physiological evolution. London: Pergamon Press 1964a.

    Google Scholar 

  • — Effects of drugs on the central nervous system. Ann. Rev. Pharmacol. 4, 341–364 (1964b).

    Article  CAS  Google Scholar 

  • — Electrophysiology and pharmacology of different components of bioelectric transducers. Cold Spr. Harb. Symp. quant. Biol. 30, 1–14 (1965).

    CAS  Google Scholar 

  • — Comparative electrobiology of excitable membranes. In: Advances in comparative physiology and biochemistry, Vol. 2. New York: Academic Press, Inc. 1966a.

    Google Scholar 

  • — Heterogeneity of excitable membrane: electrophysiological and pharmacological evidence and some consequences. Ann. N. Y. Acad. Sci. 137, 901–949 (1966b).

    Article  PubMed  CAS  Google Scholar 

  • — Some comparative biological aspects of membrane permeability control. Fed. Proc. 27, 1613–1626 (1967a).

    Google Scholar 

  • — Synaptic and ephaptic transmission. In: The neurosciences. A study program. New York: Rockefeller Univ. Press 1967b.

    Google Scholar 

  • — Tetrodotoxin: action on graded responses. Science 156, 1771 (1967 c).

    Article  PubMed  CAS  Google Scholar 

  • — Bennett, M. V. L.: Studies on morphology and electrophysiology of electric organs. I. Electrophysiology of marine fishes. In: Bioelectrogenesis. Amsterdam: Elsevier 1961.

    Google Scholar 

  • — Kao, C.-Y., Altamirano, M.: Bioelectric effects of ions microinjected into the giant axon of Loligo. J. gen. Physiol. 38, 245–282 (1954).

    Article  PubMed  CAS  Google Scholar 

  • — Reuben, J. P.: Neuromuscular synaptic activity in lobster. In: Nervous inhibition. London: Pergamon Press 1961.

    Google Scholar 

  • Hagiwara, S., Kusano, K., Saito, N.: Membrane changes in crayfish stretch receptor neuron during inhibition and under action of gamma-aminobutyric acid. J. Neurophysiol. 23, 505–515 (1960).

    PubMed  CAS  Google Scholar 

  • Hartline, H. K., Ratliff, F.: Inhibitory interaction of receptor units in the eye of Limulus. J. gen. Physiol. 40, 357–376 (1957).

    Article  PubMed  CAS  Google Scholar 

  • Hecht, S.: Vision. II. The nature of the photoreceptor process. In: A handbook of general experimental psychology. Worcester, Mass.: Clark Univ. Press 1934.

    Google Scholar 

  • Hodgkin, A. L.: The local electric changes associated with repetitive action in a non-medullated axon. J. Physiol. (Lond.) 107, 165–181 (1948).

    CAS  Google Scholar 

  • — Huxley, A. F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.) 117, 500–544 (1952).

    CAS  Google Scholar 

  • — Rushton, W. A. H.: The electrical constants of a crustacean nerve fibre. Proc. Roy. Soc. (London) B. 133, 444–479 (1946).

    Article  Google Scholar 

  • Hodgson, E. S.: Chemoreception. In: The physiology of insecta, Vol. 1. New York: Academic Press Inc. 1964.

    Google Scholar 

  • Hunt, C. C., Takeuchi, A.: Responses of the nerve terminal of the Pacinian corpuscle. J. Physiol. 160, 1–21 (1962).

    PubMed  CAS  Google Scholar 

  • Katz, B.: The release of neural transmitter substances. Liverpool: Liverpool Univ. Press 1969.

    Google Scholar 

  • — Miledi, R.: Tetrodotoxin and neuromuscular transmission. Proc. roy. Soc. (London) B. 167, 8–22 (1967a).

    Article  CAS  Google Scholar 

  • — Miledi, R.: A study of synaptic transmission in the absence of nerve impulses. J. Physiol. (Lond.) 192, 407–436 (1967b).

    CAS  Google Scholar 

  • — — Microelectrode study of taste receptors of rat and hamster. J. cell. comp. Physiol. 58, 131–140 (1961).

    Article  PubMed  CAS  Google Scholar 

  • Koketsu, K.: Mechanism of active depolarization. Dispensability of sodium. In: Biophysics of physiological and pharmacological actions. Washington, D. C.: Amer. Ass. Advanc. Sci. 1961.

    Google Scholar 

  • Kuffler, S. W.: Discharge patterns and functional organization of mammalian retina. J. Neurophysiol. 16, 37–68 (1953).

    PubMed  CAS  Google Scholar 

  • — Eyzaguirre, C.: Synaptic inhibitions in an isolated nerve cell. J. gen. Physiol. 39, 155–184 (1955).

    Article  PubMed  CAS  Google Scholar 

  • — Hunt, C. C.: The mammalian small-nerve fibers: a system for efferent nervous regulation of muscle spindle discharge. Res. Publ. Ass. nerv. ment. Dis. 30, 24–47 (1952).

    CAS  Google Scholar 

  • Kusano, K., Livengood, D. R., Werman, R.: Correlation of transmitter release with membrane properties of presynaptic fibers of the squid giant synapse. J. gen. Physiol. 50, 2579–2597 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Loewenstein, W. R.: Permeability of membrane junctions. Ann. N. Y. Acad. Sci. 137, 441–472 (1966).

    Article  PubMed  CAS  Google Scholar 

  • — Mechano-electric transduction in the Pacinian Corpuscle. Initiation of the sensory impulses in the mechanoreceptors. In: Handbook of sensory physiology, vol. I, pp. 269–290. Berlin-Heidelberg-New York: Springer 1971.

    Google Scholar 

  • — Terzuolo, C. A., Washizu, Y.: Separation of transducer and impulse generating processes in sensory receptors. Science 142, 1180–1181 (1963).

    Article  PubMed  CAS  Google Scholar 

  • Lundberg, A.: Secretory potentials and secretion in the sublingual gland of the cat. Nature (Lond.) 177, 1080–1081 (1956).

    Article  CAS  Google Scholar 

  • MacNichol, E. F., Jr., Svaetichin, G.: Electric responses from isolated retinas of fishes. Amer. J. Ophthal. 46, 26–46 (1958).

    PubMed  CAS  Google Scholar 

  • Millecchia, R., Bradbury, J., Mauro, A.: Simple photoreceptors in Limulus polyphemus. Science 154, 1199–1201 (1966).

    Article  PubMed  CAS  Google Scholar 

  • — Mauro, A.: The ventral photoreceptor cells of Limulus. II. The basic photoresponse. J. gen. Physiol. 54, 310–330(1969a).

    CAS  Google Scholar 

  • Millecchia, R., Mauro, A.: The ventral photoreceptor cells of Limulus. III. A voltage clamp study. J. gen. Physiol. 54, 331–351 (1969b).

    CAS  Google Scholar 

  • Moulton, D. G., Beidler, L. M.: Structure and function in the peripheral olfactory system. Physiol. Rev. 47, 1–52 (1967).

    PubMed  CAS  Google Scholar 

  • Nakajima, S.: Adaptation in stretch receptor neurons of crayfish. Science 146, 1168–1170 (1964).

    Article  PubMed  CAS  Google Scholar 

  • — Onodera, K.: Membrane properties of the stretch receptor neurones of atayfish with particular reference to mechanisms of sensory adaptatron. J. Physiol. (Lond.) 200, 161–185 (1969a).

    CAS  Google Scholar 

  • — — Adaptation of the generator potential in the crayfish stretch receptors under constant length and constant tension. J. Physiol. (Lond.) 200, 187–204 (1969b).

    CAS  Google Scholar 

  • — Takahashi, K.: Post-tetanic hyperpolarization and electrogenic Na-pump in stretch receptor neuron of crayfish. J. Physiol. (Lond.) 187, 105–127 (1966).

    CAS  Google Scholar 

  • Oakley, B., Benjamin, R. M.: Neural mechanisms of taste. Physiol. Rev. 46, 173–211 (1966).

    PubMed  CAS  Google Scholar 

  • Obara, S.: Effects of some organic cations on generator potential of stretch receptor of crayfish. J. gen. Physiol. 52, 22–45 (1968).

    Article  Google Scholar 

  • — Grundfest, H.: Effects of lithium on different membrane components of crayfish stretch receptor neurons. J. gen. Physiol. 51, 635–654 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Ottoson, D., Shepherd, G. M.: Transducer properties and integrative mechanisms in the frog’s muscle spindle. In: Handbook of sensory physiology, vol. I, pp. 442–499. Berlin-Heidelberg-New York: Springer 1971.

    Google Scholar 

  • Ozeki, M., Freeman, A. R., Grundfest, H.: The membrane components of crustacean neuromuscular systems. I. Immunity of different electrogenic components to tetrodotoxin and saxitoxin. J. gen. Physiol. 49, 1319–1334 (1966).

    CAS  Google Scholar 

  • — Grundfest, H.: Crayfish muscle fiber: ionic requirements for depolarizing synaptic electrogenesis. Science 155, 478–481 (1967).

    Article  PubMed  CAS  Google Scholar 

  • — Sato, M.: Changes in the membrane potential and the membrane conductance associated with sustained compression of the nonmyelinated nerve terminal in Pacinian corpuscles. J. Physiol. (Lond.) 180, 186–208 (1965).

    CAS  Google Scholar 

  • Purple, R. L., Dodge, F. A.: Interaction of excitation and inhibition in the eccentric cell in the eye of Limulus. Cold Spr. Harb. Symp. quant. Biol. 30, 529–537 (1965).

    CAS  Google Scholar 

  • Reuben, J. P., Grundfest, H.: Inhibitory and excitatory miniature postsynaptic potentials in lobster muscle fibers. Biol. Bull. 119, 335 (1960).

    Google Scholar 

  • — Werman, R., Grundfest, H.: The ionic mechanisms of hyperpolarizing responses in lobster muscle fibers. J. gen. Physiol. 45, 243–265 (1961).

    Article  PubMed  CAS  Google Scholar 

  • Robbins, N.: The role of the nerve in maintenance of frog taste buds. Exp. Neurol. 17, 364–380 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Rushton, W. A. H.: Chemical basis of colour vision and colour blindness. Nature (Lond.) 206, 1087–1091 (1965).

    Article  CAS  Google Scholar 

  • Sato, M., Ozeki, M.: Response of the non-myelinated nerve terminal in Pacinian corpuscles to mechanical and antidromic stimulation and the effect of procaine, choline and cooling. Jap. J. Physiol. 13, 565–582 (1963).

    Google Scholar 

  • Schaeffer, H.: Elektrophysiologie. Bd. I: Allgemeine Elektrophysiologie. Wien: Franz Deuticke 1940.

    Google Scholar 

  • Smith, T. G., Baumann, F., Fuortes, M. G. F.: Electrical connections between visual cells in the ommatidium of Limulus. Science 147, 1446–1447 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Svaetichen, G.: Spectral response curves from single cones. Acta physiol. scand. 39, Suppl. 134, 17–112 (1956).

    Google Scholar 

  • Tasaki, I.: Nerve excitation: A macromolecular approach. Springfield, Ill. C. C. Chomas 1968.

    Google Scholar 

  • — Lerman, L., Watanabe, A.: Analysis of excitation process in squid giant axons under bi-ionic conditions. Amer. J. Physiol. 216, 130–138 (1969).

    PubMed  CAS  Google Scholar 

  • Terzuolo, C. A., Knox, C. K.: Static and dynamic behavior of the stretch receptor organ of Crustacea. In: Handbook of sensory physiology vol. I, pp. 500–522. Berlin-Heidelberg-New York: Springer 1971.

    Google Scholar 

  • Tomita, T.: Electrical activity in the vertebrate retina. J. Ophthal. Soc. Am. 53, 49–57 (1963).

    Article  CAS  Google Scholar 

  • — Kakeko, A., Murakami, M. Pautler, E. L.: Spectral response curves of single cones in the carp. Vision Res. 7, 519–531 (1967).

    Article  PubMed  CAS  Google Scholar 

  • — Murakami, M., Hashimoto, Y., Sasaki, Y.: Electrical activity of single neurons in frog’s retina. In: The visual system: neuropharmacology and psychophysics. Berlin-Göttingen-Heidelberg: Springer 1961.

    Google Scholar 

  • Wald, G.: The receptor of human color vision, Science 145, 1007–1016 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Wall, P. D.: Presynaptic control of impulses at the first central synapse in the cutaneous pathway. In: Physiology of spinal neurons. Amsterdam: Elsevier 1964.

    Google Scholar 

  • Watanabe, A., Grundfest, H.: Impulse propagation at the septal and commissural junctions of crayfish lateral giant axons. J. gen. Physiol. 45, 267–308 (1961).

    Article  PubMed  CAS  Google Scholar 

  • Wiersma, C. A. G., Furshpan, E. J., Florey, E.: Physiological and pharmacological observations on the muscle receptor organs of the crayfish, Cambarus clarkii Girard. J. exp. Biol. 30, 136–150 (1953).

    CAS  Google Scholar 

  • Witkovsky, P.: A comparison of ganglion cell and S-potential response properties in carp retina. J. Neurophysiol. 30, 546–561 (1967).

    PubMed  CAS  Google Scholar 

  • Wolbarsht, M. L.: Receptor sites in insect chemoreceptors. Cold Spr. Harb. Symp. quant Biol. 30, 281–288 (1965).

    CAS  Google Scholar 

  • — Hanson, F. E.: Electrical activity in the chemoreceptors of the blowfly. III. Dendritic action potentials. J. gen. Physiol. 48, 673–683 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Yamada, E., Ishikawa, T.: The fine structure of the horizontal cells in some vertebrate retinae. Cold Spr. Harb. Symp. quant. Biol. 30, 383–392 (1965).

    CAS  Google Scholar 

  • Yamagishi, S.: Ionic mechanism of the prolonged spike of squint axons perfused with pertease. Soc. gen. Physiol. Woods Hole (Abstr.) 1969).

    Google Scholar 

  • Zelena, J.: Development, degeneration and regeneration of receptor organs. In: Progress in brain research, Vol. 13: Mechanism of neural maturation. Amsterdam: Elsevier 1964.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Grundfest, H. (1971). The General Electrophysiology of Input Membrane in Electrogenic Excitable Cells. In: Loewenstein, W.R. (eds) Principles of Receptor Physiology. Handbook of Sensory Physiology, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-65063-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-65063-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-65065-9

  • Online ISBN: 978-3-642-65063-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics