Skip to main content

Transmission Action on Synaptic Neuronal Receptor Membranes

  • Chapter
Principles of Receptor Physiology

Part of the book series: Handbook of Sensory Physiology ((SENSORY,volume 1))

Abstract

Following the historical work on the inhibitory synapse of the motoneurone in the vertebrate spinal cord (Brock et al., 1952), the neurohumoral theory of synaptic transmission was generally accepted as a satisfactory description of the mechanism by which informations is transmitted to a neuron. It is now known that some neurons can also interact by a purely electrical process, but the electrically working junction offers less functional flexibility than the chemical synapse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ambache, N.: The nicotinic action of substances supposed to the purely smooth-muscle stimulating (B) Effect of BaCl2 and pilocarpine on the superior cervical ganglion. J.Physiol. (Lond.) 110, 164–172 (1949).

    CAS  Google Scholar 

  • — A further survey of the action of Clostridium botulinum toxin upon different types of autonomic nerve fibres. J. Physiol. (Lond.) 113, 1–17 (1951).

    CAS  Google Scholar 

  • Andersen, P., Curtis, D. E.: The pharmacology of the synaptic and acetyl-choline-induced excitation of ventrobasal thalamic neurones. Acta pyhsiol. scand. 61, 100–120 (1964).

    CAS  Google Scholar 

  • Araki, T., Oscarsson, O.: Anion permeability of the synaptic and non-synaptic motoneurone membrane. J. Physiol. (Lond.) 159, 410–435 (1961).

    CAS  Google Scholar 

  • Arvanitaki, A., Chalazonitis, N.: Configurations modales de l’activité, propres à différents neurones d’un même centre. J. Physiol. (Paris) 50, 122–125 (1958).

    CAS  Google Scholar 

  • Ascher, P., Kehoe, J. S., Tauc, L.: Effets d’injections électrophorétiques de dopamine sur les neurones d’Aplysie. J. Physiol. (Paris) 59, 331–332 (1967).

    CAS  Google Scholar 

  • Axelsson, J., Thesleff, S.: The “desensitizing” effect of ACh on the mammalian motor endplate. Acta physiol. scand. 43, 15–26 (1958).

    PubMed  CAS  Google Scholar 

  • Barlow, E. B., Zoller, A.: Some effects of long chain polymethylene bisonium salts on junctional transmission in the peripheral nervous system. Brit. J. Pharmacol. 23, 131–150 (1964).

    CAS  Google Scholar 

  • Blackman, J. G., Ginsborg, B. L., Ray, C.: The release of acetylcholine at a ganglionic synapse. J. Physiol. (Lond.) 162, 58P—59P (1962).

    Google Scholar 

  • — Synaptic transmission in the sympathetic ganglion of the frog. J. Physiol. (Lond.) 167, 355–373 (1963).

    CAS  Google Scholar 

  • Bloom, G., Östlund, E., Euler, U. S. von, Lishajko, F., Eitzen, M., Adams-Ray, J.: Studies on catecholamine-containing granules of specific cells in cyclostome hearts. Acta physiol. scand. 53, Suppl. 185 (1961).

    Google Scholar 

  • Brock, L. G., Coombs, J. S., Ecoles, J. C.: The recording of potentials from motoneurones with an intracellular electrode. J. Physiol. (Lond.) 117, 431–460 (1952).

    CAS  Google Scholar 

  • Brooks, V. B.: An intracellular study of the action of repetitive nerve volleys and of Botulinum toxin on miniature end-plate potentials. J. Physiol. (Lond.) 134, 264–277 (1956).

    CAS  Google Scholar 

  • Bruner, J., Tauc, L.: Long lasting phenomena in the molluscan nervous system. In: Neural and humoral mechanisms of nervous integration. Exp. Biol. Symp. St.-Andrews 1965.

    Google Scholar 

  • — Habituation at the synaptic level in Aplysia. Nature (Lond.) 210, 37–39 (1966).

    CAS  Google Scholar 

  • Burgen, A. S. V., Dickens, F., Zatman, L. J.: The action of Botulinum toxin on the neuromuscular junction. J. Physiol. (Lond.) 109, 10–24 (1949).

    CAS  Google Scholar 

  • Castro, F. de: Sympathetic ganglia, normal and pathological. In: Cytology and cellular pathology of the nervous system. Ed. by Hoeber. I, p. 317–379. New York: Penfield.

    Google Scholar 

  • Chiarandini, D. J., Gerschenfeld, H. M.: Ionic mechanism of cholinergic inhibition in molluscan neurons. Science 156, 1595–1596 (1967).

    PubMed  CAS  Google Scholar 

  • Stefani, E., Gerschenfeld, H. M.: Ionic mechanisms of cholinergic excitation in molluscan neurons. Science 156, 1597–1599 (1967).

    PubMed  CAS  Google Scholar 

  • Coombs, J. S., Ecoles, J. C., Fatt, P.: Excitatory synaptic action in motoneurones. J. Physiol. (Lond.) 130, 374–395 (1955).

    CAS  Google Scholar 

  • Curtis, D. R., Ecoles, R. M.: The excitation of renshaw cells by pharmacological agents applied electrophoretically. J. Physiol. (Lond.) 141, 435–445 (1958).

    CAS  Google Scholar 

  • — — The time course of excitatory and inhibitory synaptic actions. J. Physiol. (Lond.) 145, 529–546 (1959).

    CAS  Google Scholar 

  • Phillis, J. W., Watkins, J. C.: The chemical excitation of spinal neurones by certain acidic amino acids. J. Physiol. (Lond.) 150, 656–682 (1960).

    CAS  Google Scholar 

  • Ryall, R. W.: The excitation of renshaw cells by cholinomimetics. Exp. Brain Res. 2, 49–65 (1966a).

    PubMed  CAS  Google Scholar 

  • — — The acetylcholine receptors of renshaw cells. Exp. Brain Res. 2, 66–80 (1966b).

    PubMed  CAS  Google Scholar 

  • — — The synaptic excitation of renshaw cells. Exp. Brain Res. 2, 81–96 (1966c).

    PubMed  CAS  Google Scholar 

  • — — Watkins, J. C.: The action of cholinomimetics on spinal interneurones. Expl. Brain Res. 2, 97–106 (1966).

    CAS  Google Scholar 

  • Watkins, J. C.: Acidic amino acids with strong excitatory actions on mammalian neurons. J. Physiol. (Lond.) 166, 1–14 (1963).

    CAS  Google Scholar 

  • Dale, H. H.: Pharmacology and nerve endings. Proc. roy. Soc. Med. 28, 319–332 (1935).

    PubMed  CAS  Google Scholar 

  • — Transmission of effects from nerve endings. London: Oxford University Press 1952.

    Google Scholar 

  • Eccles, J. C.: The physiology of synapses. Berlin-Göttingen-Heidelberg-New York: Springer 1964.

    Google Scholar 

  • Iggo, A., Lundberg, A.: Electrophysiological investigations on renshaw cells. J. Physiol. (Lond.) 159, 461–478 (1961).

    CAS  Google Scholar 

  • Libet, B.: Origin and blockade of the synaptic responses of curarized sympathetic ganglia. J. Physiol. (Lond.) 157, 484–503 (1961).

    CAS  Google Scholar 

  • Elfvin, L. G.: The ultrastructure of the superior cervical ganglion of the cat. II. The structure of the preganglionic end fibers and the synapses as studied by serial sections. J. Ultrastruct. Res. 8, 441–476 (1963).

    Google Scholar 

  • Fedorov, B., Matwejewa, S. J.: La structure des connexions interneuronales dans le système autonome de la Grenouille. Trab. Lab. Invest. Biol. Univ. Madr. 30, 379–401 (1935).

    Google Scholar 

  • Frank, K., Tauc, L.: Voltage-clamp studies of molluscan neuron membrane properties. In: The cellular functions of membrane transport. Hoffman, J. F., Ed. Englewood Cliffs, N. J.: Prentice-Hall 1964.

    Google Scholar 

  • Frazier, W. T., Kandel, E. R., Kupferman, I., Waziri, R., Coggeshall, R. E.: Morphological and functional properties of identified neurons in the abdominal ganglion of aplysia californica. J. Neurophysiol. 30, 1288–1351 (1967).

    Google Scholar 

  • Gerschenfeld, H. M., Ascher, P., Tauc, L.: Two different excitatory transmitters acting on a single molluscan neurone. Nature (Lond.) 213, 358–359 (1967).

    CAS  Google Scholar 

  • Chiarandini, D. J.: Ionic mechanism associated with non-cholinergic synaptic inhibition in molluscan neurons. J. Neurophysiol. 28, 710–723 (1965).

    PubMed  CAS  Google Scholar 

  • Stefani, E.: 5-Hydroxytryptamine receptors and synaptic transmission in molluscan neurones. Nature (Lond.) 189, 924–925 (1965).

    Google Scholar 

  • Tauc, L.: Différents aspects de la pharmalogie des synapses dans le système nerveux central des mollusques. J. Physiol. (Paris) 56, 360–361 (1964).

    CAS  Google Scholar 

  • Hamberger, B., Norberg, K.-A., Sjoqvist, F.: Evidence for adrenergic nerve terminals and synapses in sympathetic ganglia. Int. J. Neuropharmacol. 2, 279–282 (1963a).

    PubMed  CAS  Google Scholar 

  • — — — Cellular localization of mono-amines in sympathetic ganglia of the cat. A preliminary report. Life Sci. 9 659–661 (1963b).

    CAS  Google Scholar 

  • — — — Correlated studies of mono-amines and acetylcholinesterase in sympathetic ganglia, illustrating the distribution of adrenergic and cholinergic neurons. Proc. 2. Int. Pharmacol. Meeting 1963. In: Pharmacology of cholinergic and adrenergic transmission. Praha: Czechoslovak Medical Press 1965, 41–53.

    Google Scholar 

  • Huber, G. C.: A contribution on the minute anatomy of the sympathetic ganglia of the different classes of vertebrates. J. Morphol. 16, 27–90 (1900).

    Google Scholar 

  • Kandel, E. R., Frazier, W. T., Waziri, R., Coggeshall, R. E.: Direct and common connections among identified neurons in aplysia. J. Neurophysiol. 30, 1352–1376 (1967).

    PubMed  CAS  Google Scholar 

  • — Tauc, L.: Mechanism of prolonged heterosynaptic facilitation. Nature (Lond.) 202, 145–147 (1964).

    CAS  Google Scholar 

  • Kandel, E. R., Tauc, L.: Heterosynaptic facilitation in neurones of the abdominal ganglion of aplysia depilans J. Physiol. (Lond.) 181, 1–27 (1965a).

    CAS  Google Scholar 

  • — — Mechanism of heterosynaptic facilitation in the giant cell of the abdominal ganglion of aplysia depilans. J. Physiol. (Lond.) 181, 28–47 (1965b).

    CAS  Google Scholar 

  • Wachtel, H.: The functional organization of neural aggregate in aplysia. In: Physiological and biochemical aspects of nervous integration. Carlson, F. D., (Ed.), Englwood Cliffs, N.J.: Prentice Hall 1968.

    Google Scholar 

  • Katz, B.: The transmission of impulses from nerve to muscle, and the subcellular unit of synaptic action. Proc. roy. Soc. B. 155, 455–479 (1962).

    Google Scholar 

  • Thesleff, S.: A study of the “desensitization” produced by acetyl-choline at the motor end-plate. J. Physiol. (Lond.) 138, 63–80 (1957).

    CAS  Google Scholar 

  • Kehoe, J. S.: Pharmacological characteristics and ionic bases of a two component postsynaptic inhibition. Nature (Lond.) 215, 1503–1505 (1967).

    CAS  Google Scholar 

  • — Double inhibition de certains neurones d’Aplysie. J. Physiol. (Paris) 60, 266 (1968).

    Google Scholar 

  • Kerkut, G. A., Meech, R. W.: The internal chloride concentration of H and D cells in the snail brain. Comp. Biochem. Physiol. 19, 819–832 (1966a).

    CAS  Google Scholar 

  • — — Microelectrode determination of the intracellular chloride concentration in nerve cells. Life Sci. 5, 453–456 (1966b).

    PubMed  CAS  Google Scholar 

  • Thomas, R. C.: Acetylcholine and the spontaneous inhibitory postsynaptic potentials in the snail neurone. Comp. Biochem. Physiol. 8, 39–45 (1963a).

    CAS  Google Scholar 

  • — — Anion permeability of the inhibitory postsynaptic membrane of Helix neurones. J. Physiol. (Lond.) 168, 23–24P (1963b).

    Google Scholar 

  • — — The effect of anion injection and changes in the external potassium of the IPSP and acetylcholine. Comp. Biochem. Physiol. 11, 199–213 (1964).

    PubMed  CAS  Google Scholar 

  • Khromov-Borisov, N. V., Michelson, M. J.: The mutual disposition of cholino receptors of locomotor muscles, and the changes in their disposition in the course of evolution. Pharmacol. Rev. 18, 1051–1090 (1966).

    PubMed  CAS  Google Scholar 

  • Koketsu, K., Nishi, S.: Characteristics of the slow inhibitory postsynaptic potential of bullfrog sympathetic ganglion cells. Life Sci. 6, 1827–1836 (1967).

    PubMed  CAS  Google Scholar 

  • Kosterlitz, H. W., Lees, G. M., Wallis, D. I.: Resting and action potentials recorded by the sucrose gap method in the superior cervical ganglion of the rabbit. J. Physiool. (Lond.) 195, 39–53 (1968).

    CAS  Google Scholar 

  • Larrabee, M. G., Klingman, J. D., Leicht, W. S.: Effects of temperature, calcium and activity on phospholipid metabolism in a sympathetic ganglion. J. Neurochem. 10, 549–570 (1963).

    PubMed  CAS  Google Scholar 

  • Leicht, W. S.: Metabolism of phosphatidyl inositil and other lipids in active neurones of sympathetic ganglia and other peripheral nervous tissues. The site of the inositide effect. J. Neurochem. 12, 1–13 (1965).

    PubMed  CAS  Google Scholar 

  • Libet, B.: Slow synaptic responses in sympathetic ganglia. Fed. Proc. 21, 345 (1962).

    Google Scholar 

  • — Slow synaptic responses and excitory changes in sympathetic ganglia. J. Physiol. (Lond.) 174, 1–25 (1964).

    CAS  Google Scholar 

  • — Postsynaptic nature and long synaptic delays of the slow responses in sympathetic ganglia. Physiologist 8, 219 (1965).

    Google Scholar 

  • — Slow synaptic responses in autonomic ganglia. In: Studies in physiology. Berlin-Heidelberg-New York: Springer 1965.

    Google Scholar 

  • — Long latent periods and further analysis of slow synaptic responses in sympathetic ganglia. J. Neurophysiol. 30, 494–514 (1967).

    PubMed  CAS  Google Scholar 

  • Kobayashi, H.: Generation of adrenergic and cholinergic potentials in sympathetic ganglion cells. Science 164, 1530–1532 (1969).

    PubMed  CAS  Google Scholar 

  • Kobayashi, M.: Electrogenesis of slow postsynaptic potentials in sympathetic ganglion cells. Fed. Proc. 27, 750 (1968).

    Google Scholar 

  • Tosaka, T.: Slow postsynaptic potentials recorded intracellularly in sympathetic ganglia. Fed. Proc. 25, 270 (1966).

    Google Scholar 

  • — — Slow inhibitory and excitatory postsynaptic responses in single cells of mammalian sympathetic ganglia. J. Neurophysiol. 32, 43–50 (1969).

    PubMed  CAS  Google Scholar 

  • Majorow, V. N.: Über den Ausschau der lebenden perizellulären Apparate. Z. mikr.-anat. Forsch. 65, 547–556 (1959).

    PubMed  CAS  Google Scholar 

  • Majorow, V. N.: Neue Angaben über den Aufbau der lebenden und absterbenden Neurone sowie der interneuronalen Verbindungen. Z. mikr.-anat. Forsch. 66, 225–235 (1960).

    PubMed  CAS  Google Scholar 

  • Nishi, S., Koketsu, K.: Electrical properties and activities of single sympathetic neurons in frogs. J. cell. comp. Physiol. 55, 15–30 (1960).

    PubMed  CAS  Google Scholar 

  • — — Early and late afterdischarges of Amphibian sympathetic ganglion cells. J. Neurophysiol. 31, 109–121 (1968).

    PubMed  CAS  Google Scholar 

  • Koketsu, J.: Analysis of slow inhibitory postsynaptic potential of bullfrog sympathetic ganglion. J. Neurophysiol. 81, 717–728 (1968).

    Google Scholar 

  • Soeda, H.: The electrical activities of sympathetic B and C neurons and the mode of presynaptic innervation. Kurume med. J. 9, 178–192 (1962).

    Google Scholar 

  • — — Koketsu, K.: Studies on sympathetic B and C neurons and patterns of preganglionic innervation. J. cell. comp. Physiol. 66, 19–32 (1965).

    CAS  Google Scholar 

  • Norberg, K.-A., Hamberger, B.: The sympathetic adrenergic neuron. Acta physiol. scand. 63, Suppl. 238, (1964).

    Google Scholar 

  • Sjoqvist, F.: New possibilities for adrenergic modulation of ganglionic transmission. II. catecholamine Symp. Milan (Italy) 1965. Pharmacol. Rev. 18, 743–751 (1966).

    PubMed  CAS  Google Scholar 

  • Pick, J.: The submicroscope organisation of the sympathetic ganglion in the frog (rana pipiens). J. comp. Neurol. 120, 409–462 (1963).

    PubMed  CAS  Google Scholar 

  • Quastel, D. M. J., Curtis, D. R.: A central action of hemicholinium. Nature (Lond.) 208, 192–194 (1965).

    CAS  Google Scholar 

  • Renshaw, B.: Central effects of centripetal impulses in axons of spinal ventral roots. J. Neurophysiol. 9, 191–204 (1946).

    PubMed  CAS  Google Scholar 

  • Robertis, E. de, Bennett, H. S.: Some features of the submicroscopic morphology of synapses in frog and earthworm. J. biophys. biochem. Cytol. 1, 47–58 (1955).

    Google Scholar 

  • Smirnow, A.: Zur Kenntnis der Morphologie der sympathischen Ganglienzellen beim Frosch. Anat. Hefte, Abt. I, 14, 409–432 (1900).

    Google Scholar 

  • Strumwasser, F.: Postsynaptic inhibition and excitation produced by different branches of a single neuron and the common transmitter involved Proc. 22. Int. Congr. Physiol. Sci., Leiden 2 (1962).

    Google Scholar 

  • Takeshige, C., Volle, R. L.: Modification of ganglionic responses to cholinometic drugs following preganglionic stimulation, anticholinesterase agents and pilocarpine. J. Pharmacol, exp. Ther. 146, 335–343 (1964b).

    CAS  Google Scholar 

  • — — A comparison of the ganglion potentials and block produced by acetylcholine and tetramethylammonium. Brit. J. Pharmacol. 23, 80–89 (1964c).

    PubMed  CAS  Google Scholar 

  • Takeuchi, A., Takeuchi, N.: Active phase of frog’s end-plate potential. J. Neurophysiol. 22, 395–411 (1959).

    PubMed  CAS  Google Scholar 

  • Tauc, L.: Processus postsynaptique d’excitation et d’inhibition dans le soma neuronique de l’Aplysie et de l’Escargot. Arch. ital. Biol. 96, 78–110 (1958).

    Google Scholar 

  • — Preuve expérimentale de l’existence de neurones intermédiaires dans le ganglion abdominal de l’Aplysie. C. R. Acad. Sci. (Paris) 248, 853–856 (1959a).

    CAS  Google Scholar 

  • — Sur la nature de l’onde de surpolarisation de longue durée observée parfois après l’excitation synaptique de certaines cellules ganglionnaires de Mollusques. C. R. Acad. Sci. (Paris) 249, 318–320 (1959b).

    CAS  Google Scholar 

  • — Inhibition présynaptique dans les neurones centraux de l’Aplysie. C. R. Acad. Sci. (Paris) 259, 885–888 (1964).

    CAS  Google Scholar 

  • — Presynaptic inhibition in the abdominal ganglion of Aplysia. J. Physiol. (Lond.) 181, 282–307 (1965).

    CAS  Google Scholar 

  • — Physiology of the nervous system. In: Physiology of Mollusca Wilbur, K. M., Yonge, C. M. (Eds.). New York: Academic Press Inc. 1966.

    Google Scholar 

  • — Physiology of the nervous system. In: Physiology of Mollusca Wilbur, K. M., Yonge, C. M. (Eds.). New York: Academic Press Inc. 1966.

    Google Scholar 

  • — Transmission in invertebrate and vertebrate ganglia. Physiol. Rev. 47, 522–593 (1967).

    Google Scholar 

  • — Some aspects of the postsynaptic inhibition in Aplysia. In: Structure and functions of inhibitory neuronal mechanisms. Proc. 4. Int. Meeting Neurobiol., 1966, Stockholm. Oxford: Pergamon Press 1968.

    Google Scholar 

  • Bruner, J.: “Desensitization” of cholinergic receptors by acetyl choline in molluscan central neurones. Nature (Lond.) 198, 3334 (1963).

    CAS  Google Scholar 

  • Tauc, L., Epstein, R.: Heterosynaptic facilitation as a distinct mechanism in Aplysia. Nature (Lond) 214, 724–725 (1967).

    CAS  Google Scholar 

  • Gerschenfeld, H. M.: Cholinergic transmission mechanisms for both excitation and inhibition in molluscan central synapses. Nature (Lond.) 192, 366–367 (1961).

    CAS  Google Scholar 

  • — — A cholinergic mechanism of inhibitory synaptic transmission in a molluscan system. J. Neurophysiol. 25, 236–262 (1962).

    PubMed  CAS  Google Scholar 

  • Taxi, J.: Contribution à l’étude des connexions des neurones moteurs du système nerveux autonome. Thèse Sciences, Paris, 1964. Ann. Sci. Nat. Zool. 7, 413–674 (1965).

    Google Scholar 

  • Tosaka, T., Chichibu, S., Libet, B.: Intracellular analysis of slow inhibitory and excitatory postsynaptic potentials in sympathetic ganglia of the frog. J. Neurophysiol. 31, 396–409 (1968).

    PubMed  CAS  Google Scholar 

  • Uchizono, K.: On different types of synaptic vesicles in the sympathetic ganglia of amphibia. Jap. J. Physiol. 14, 210–219 (1964).

    CAS  Google Scholar 

  • — Characteristics of excitatory and inhibitory synapses in the central nervous system of the cat. Nature (Lond.) 207, 642–643 (1965).

    CAS  Google Scholar 

  • — Inhibitory and excitatory synapses in vertebrate and invertebrate animals. In: Structure and function of neuronal inhibitory mechanisms. Proc. 4th Int. Meeting Neurobiol. 1966. Stockholm, Oxford: Pergamon Press 1968.

    Google Scholar 

  • Volle, R. L.: Interactions of cholinometic and cholinergic blocking drugs at sympathetic ganglia. In: Pharmacology of cholinergic and adrenergic transmission. Proc. 2. Int. Pharmacol. Meeting. Prague: Czech. Med. Press 1965.

    Google Scholar 

  • — Modification by drugs of synaptic mechanisms in autonomic ganglia. Pharmacol. Rev. 18, 839–869 (1966).

    CAS  Google Scholar 

  • — Muscarinic and nicotinic stimulant actions at autonomic ganglia. In: Int. Encyclop. Pharmacol. Therap., Sect. 12. Vol. I. Oxford: Pergamon Press 1966.

    Google Scholar 

  • Vulfius, E. A., Veprintzev, B. N., Zeimal, E. V., Michelson, M. J.: Arrangement of cholinoreceptors on the neuronal membrane of two pulmonate gastropods. Nature (Lond.) 216, 400–401 (1967).

    CAS  Google Scholar 

  • Wachtel, H., Kandel, E. R.: A direct synaptic connection mediating both excitation and inhibition. Science 158, 1206–1208 (1967).

    PubMed  CAS  Google Scholar 

  • Williams, T. H. W.: Electron microscopic evidence for an autonomic interneuron. Nature (Lond.) 214, 309–310 (1967).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Tauc, L. (1971). Transmission Action on Synaptic Neuronal Receptor Membranes. In: Loewenstein, W.R. (eds) Principles of Receptor Physiology. Handbook of Sensory Physiology, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-65063-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-65063-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-65065-9

  • Online ISBN: 978-3-642-65063-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics