Skip to main content

Proteins in Bioelectricity. Acetylcholine-Esterase and -Receptor

  • Chapter
Principles of Receptor Physiology

Part of the book series: Handbook of Sensory Physiology ((SENSORY,volume 1))

Abstract

The discovery, in the latter part of the 18th century, that the powerful shock of certain fish is an electric discharge immediately raised the question as to the mechanism by which living cells produce electricity. The importance of this problem for biology in general became apparent when it was firmly established during the 19th century that nerve impulses are propagated by electric currents. Thus, the understanding of one of the most vital functions of the organism became linked to the knowledge of the mechanism of bioelectricity. At the turn of this century, two notions were widely accepted. First, in a fluid system, such as the living cell, ions must be the carriers of electric currents. Since it was known that Na+ ions are highly concentrated in the outer environment of cells whereas K+ ion concentrations are high in the interior, Overton (1902) proposed, on the basis of simple experiments, that during activity Na+ ions move into the cell interior and an equivalent number of K+ ions flow to the outside. Overton’s assumption was borne out when the availability of radioactive ions after World War II made it possible to measure the ion movements during rest and during activity. The second notion was concerned with the control of these ion movements; it was postulated that the cell membranes surrounding nerve and muscle fibers must be able to change their permeability to ions during activity.

This work has been supported, in part, by U.S. Public Health Service Grants NB-03304 and NB-07743, by National Science Foundation Grant GB-7149, and by the New York Heart Association, Inc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott, B. C., Hill, A. V., Howarth, J. V.: The positive and negative heat production associated with a nerve impulse. Proc. roy. Soc. B 148, 149–187 (1958).

    CAS  Google Scholar 

  • Aldridge, W. N.: The inhibition of erythrocyte Cholinesterase by tri-esters of phosphoric acid: 3. The nature of the inhibitory process. Biochem. J. 54, 442–448 (1953).

    PubMed  CAS  Google Scholar 

  • — Davison, A. N.: The mechanism of inhibition of cholinesterases by organophosphorus compounds. Biochem. J. 55, 763–766 (1953).

    PubMed  CAS  Google Scholar 

  • Altamirano, M., Coates, C. W., Grundfest, H., Nachmansohn, D.: Mechanisms of bioelectric activity in electric tissue. I. The response to indirect and direct stimulation of electroplaques of Electrophorus electricus. J. gen. Physiol. 37, 91–110 (1953).

    PubMed  CAS  Google Scholar 

  • — — — — Electrical activity in electric tissue. III. Modifications of electrical activity by acetylcholine and related compounds. Biochim. biophys. Acta (Amst.) 16, 449–463 (1955).

    CAS  Google Scholar 

  • — Schleyer, W. L., Coates, C. W., Nachmansohn, D.: Electrical activity in electric tissue. I. The difference between tertiary and quaternary nitrogen compounds in relation to their chemical and electrical activities. Biochim. biophys. Acta (Amst.) 16, 268–282 (1955).

    CAS  Google Scholar 

  • Armett, C. J., Ritchie, J. M.: The action of acetylcholine on conduction in mammalian nonmyelinated fibers and its prevention by anti-cholinesterase. J. Physiol. (Lond.) 152, 141 to 158 (1960).

    CAS  Google Scholar 

  • Auger, D., Fessard, A.: Étude oscillographique des decharges de l’appareil Ă©lectrique des Raies. Ann. Physiol. Physicochim. biol. 15, 261–270 (1939).

    CAS  Google Scholar 

  • Augustinsson, K.-B., Heimburger, G.: Enzymatic hydrolysis of organophosphorus compounds. V. Effect of phosphoryl phosphatase on the inactivation of cholinesterases by organophosphorus compounds in vitro. Acta chem. scand. 8, 310–318 (1955).

    Google Scholar 

  • Baker, P. F., Hodgkin, A. L., Shaw, T. I.: The effects of changes in internal ionic concentrations on the electrical properties of perfused giant axons. J. Physiol. 164, 355–374 (1962).

    PubMed  CAS  Google Scholar 

  • Balls, A. K., Jansen, E. F.: Stoichiometric inhibition of chymotropsin. Adv. Enzymol. 13, 321–343 (1952).

    CAS  Google Scholar 

  • Barrnett, R. J.: The fine structural localization of acetylcholinesterase at the myoneural junction. J. Cell Biol. 12, 247–262 (1962).

    PubMed  CAS  Google Scholar 

  • Bartels, E.: Structure-activity relationship studied on the isolated single electroplax. Biochim. biophys. Acta (Amst.) 63, 365–373 (1962).

    CAS  Google Scholar 

  • — Relationship between acetylcholine and local anesthetics. Biochim. biophys. Acta (Amst.) 109, 194–203 (1965).

    CAS  Google Scholar 

  • — Reactions of ACh-receptor and -esterase studied on the electroplax. Biochem. Pharmacol. 17, 945–956 (1968).

    PubMed  CAS  Google Scholar 

  • — Nachmansohn, D.: Molecular structure determining the action of local anesthetics on the acetylcholine receptor. Biochem. Z. 342, 359–374 (1965).

    PubMed  CAS  Google Scholar 

  • — — Organophosphate inhibitors of acetylcholine-receptor and -esterase tested on the electroplax. Arch. Biochem. Biophys., 133, 1–10 (1969).

    PubMed  CAS  Google Scholar 

  • Benson, A. A.: On the orientation of lipids in chloroplast and cell membranes. J. Am. Oil Chemists’ Soc. 43, 265–270 (1966).

    CAS  Google Scholar 

  • Bergmann, F., Segal, R.: The relationship of quaternary ammonium salts to the anionic sites of true and pseudo Cholinesterase. Biochem. J. 58, 692–698 (1954).

    PubMed  CAS  Google Scholar 

  • Berman, R., Wilson, I. B., Nachmansohn, D.: Choline acetylase specifity in relation to biological function. Biochim. biophys. Acta (Amst.) 12, 315–324 (1953).

    CAS  Google Scholar 

  • Bieth, J., Vratsanos, S. M., Wasserman, N., Erlanger, B. F.: Photoregulation of biological activity by photocromic reagents. II. Inhibitors of acetylcholinesterase. Proc. nat. Acad. Sci. (Wash.) 64, 1103–1106 (1969).

    CAS  Google Scholar 

  • Blake, C. C. F., Koenig, D. F., Mair, G. A., North, A. C. T., Phillips, D. C., Sarma, V. E.: Structure of hen egg-white lysozyme. A three dimensional fourier synthesis at 2 A resolution. Nature (Lond.) 206, 757–761 (1965).

    CAS  Google Scholar 

  • — Mair, G. A., North, A. C. T., Phillips, D. C., Sarma, V. R.: On the conformation of the hen egg-white lysozyme molecule. Proc. roy. Soc. B 167, 365–377 (1967).

    Google Scholar 

  • Blangy, H., Buc, H., Monod, J.: Kinetics of the allosteric interactions of phosphofructokinase from Escherichia coli. J. mol. Biol. 31, 13–35 (1968).

    PubMed  CAS  Google Scholar 

  • Bloom, F. E., Barrnett, R. J.: Fine structural localization of acetylcholinesterase in electro-plaque of the electric eel. J. Cell Biol. 29, 475–495 (1966).

    PubMed  CAS  Google Scholar 

  • Breslow, E., Beychok, S., Hardman, K., Gurd, F. R. N.: Relative conformations of sperm whale metmyoglobin and apomyoglobin in solutuion. J. Biol. Chem. 240, 1639–1646 (1965).

    Google Scholar 

  • Brink, F.: The role of calcium ions in neural processes. Pharmacol. Rev. 6, 243–298 (1954).

    PubMed  CAS  Google Scholar 

  • Brzin, M.: The localization of acetylcholinesterase in axonal membranes of frog nerve fibers. Proc. nat. Acad. Sci. (Wash.) 56, 1560–1563 (1966).

    CAS  Google Scholar 

  • — Dettbarn, W.-D., Rosenberg, P., Nachmansohn, D.: Acetylcholinesterase activity per unit surface of conducting membranes. J. Cell Biol. 26, 353–364 (1965).

    PubMed  CAS  Google Scholar 

  • — Tennyson, V. M., Duffy, P. E.: Acetylcholinesterase in frog sympathetic and dorsal root ganglia: A study by electron microscope cytochemistry and microgasometric analysis with the magnetic diver. J. Cell Biol. 31, 215–242 (1966).

    PubMed  CAS  Google Scholar 

  • Bullock, T. H., Grundfest, H., Nachmansohn, D., Rothenberg, M. A.: Generality of the role of acetylcholine in nerve and muscle conduction. J. Neurophysiol. 10, 11–22 (1947).

    PubMed  CAS  Google Scholar 

  • — Hagiwara, S.: Intracellular recording from the giant synapse of the squid. J. Gen. Physiol. 40, 565–577 (1957).

    PubMed  CAS  Google Scholar 

  • — Nachmansohn, D., Rothenberg, M. A.: Effects of inhibitors of choline esterase on the nerve action potential. J. Neurophysiol. 9, 9–22 (1946).

    PubMed  CAS  Google Scholar 

  • Burgen, A. S. V.: The mechanism of action of anticholinesterase drugs. Brit. J. Pharmacol. 4, 219–228 (1949).

    PubMed  CAS  Google Scholar 

  • — Hobbiger, F.: The inhibition of Cholinesterase by alkylphosphates and alkylphenyl-phosphates. Brit. J. Pharmacol. 6, 593–605 (1951).

    CAS  Google Scholar 

  • Canepa, F. G., Pauling, P., Sörum, H.: Structure of acetylcholine and other substrates of cholinergic systems. Nature (Lond.) 210, 907–909 (1966).

    CAS  Google Scholar 

  • Cantoni, G. L., Loewi, O.: Inhibition of Cholinesterase activity of nervous tissues by eserine in vivo. J. Pharmacol, exp. Ther. 81, 67–71 (1944).

    CAS  Google Scholar 

  • N. N.: Cellular regulatory mechanisms. Cold Spr. Harb. Symp. quant. Biol. 26, (1961).

    Google Scholar 

  • Chagas, C., Carvalho, A. P. De: Bioelectrogenesis. Proc. Symp. Comp. Bioelectrogenesis: A comparative survey of its mechanism with particular emphasis on electric fishes. Amsterdam: Elsevier 1961.

    Google Scholar 

  • Changeux, J. P.: The feedback control mechanism of biosynthetic L-threomine deaminase leg L-isoleucine. Cold Spr. Harb. Symp. quant. Biol. 26, 313–318 (1961).

    CAS  Google Scholar 

  • — Effet des analogues de la L-threonine et de la L-isoleucine sur la L-threonine desaminase. J. molec. Biol. 4, 220–225 (1962).

    PubMed  CAS  Google Scholar 

  • — Allosteric interactions on biosynthetic L-threomine deaminase from E. coli K-12. Cold Spr. Harb. Symp. quant. Biol. 28, 497–504 (1963).

    CAS  Google Scholar 

  • — Gautron, J., Israel, M., Podleski, T. R.: SĂ©paration de membranes excitables Ă  partir de l’organe Ă©lectrique d’électrophorus Ă©lectricus. C. R. Acad. Sci. Paris, 269, 1788–1791 (1969).

    CAS  Google Scholar 

  • — Gerhart, J. C., Schachman, H. K.: Allosteric interaction in aspartate transcarbamylase. I. Binding of specific ligands to the nature enzyme and its isolated subunits. Biochemistry 7, 531–538 (1968).

    PubMed  CAS  Google Scholar 

  • — Podleski, T. R.: On the excitability and cooperativity of the electroplax membrane. Proc. nat. Acad. Sci. (Wash.) 59, 944–950 (1968).

    CAS  Google Scholar 

  • — — Meunier, J.-C.: On some structural analogies between acetylcholinesterase and the macromolecular receptor of acetylcholine. J. gen. Physiol. 54, 225S–244S (1969).

    CAS  Google Scholar 

  • Changeu, J. P., Podleski, T. R., Wofsy, L.: Affinity labeling of the acetylcholine-receptor. Proc. nat. Acad. Sci. (Wash.), 58, 2063–2070 (1967).

    Google Scholar 

  • — ThiĂ©ry, J.: On the excitability and cooperativity of biological membranes. In: Regulatory Functions of Biological Membranes. J. Järnefelt ed. BBA Library 11, pp. 116–138. Amsterdam: Elsevier 1968.

    Google Scholar 

  • — — Tung, Y., Kittel, C.: On the cooperativity of biological membranes. Proc. nat. Acad. Sci. (Wash.) 57, 335–341 (1967).

    Google Scholar 

  • Childs, A. F., Davies, D. R., Green, A. L., Rutland, I. P.: The reactivation by oximes and hydroxamic acids of Cholinesterase inhibited by organophosphorus compounds. Brit. J. Pharmacol. 10, 462–465 (1955).

    PubMed  CAS  Google Scholar 

  • Chu, S. H., Mautner, H. G.: Analogs of neuroeffectors. V. Neighboring effects in the reactions of esters, thiolesters, and selenoesters. The hydrolysis and aminolysis of benzoylcholine, benzoylselenocholine and their dimethylamino analogs. J. Org. Chem. 31, 308–312 (1966).

    CAS  Google Scholar 

  • Clark, A. J.: The mode of action of drugs on cells. London: Edward Arnold & Co. 1933.

    Google Scholar 

  • — General pharmacology. In: Handbook of experimental pharmacology, Vol. IV. Heubner, W., Schueller, J., Eds. Berlin: Springer 1937.

    Google Scholar 

  • Cleland, W. W.: Dithiothreitol. A new protective reagent for SH groups. Biochemistry 3, 480–482 (1964).

    PubMed  CAS  Google Scholar 

  • Cohen, J. A., Oosterbaan, R. A.: The active site of acetylcholinesterase and related esterases and its reactivity towardes substrates and inhibitors. In: Handbook of experimental pharmacology 299–373. Ergw. XV. Koelle, G. B., (Ed.). Berlin-Göttingen-Heidelberg: Springer 1963.

    Google Scholar 

  • — Posthumus, C. H.: The mechanism of action of anti-cholinesterases. Acta physiol. Pharmacol. neerl. 4, 17–36 (1965).

    Google Scholar 

  • — — The mechanism of action of anti-cholinesterases. III. The action of anticholinesterases on the phrenic nerve-diaphragm preparation of the rat. Acta physiol. pharmacol. neerl. 5, 385–397 (1957).

    PubMed  CAS  Google Scholar 

  • Cohen, M.: Concentration of choline acetylase in conducting tissue. Arch. Biochem. 60, 261– 278 (1955).

    Google Scholar 

  • Conway, A., Koshland, jr. D. E.: Negative cooperativity in enzyme action. The binding of diphosphopyridine nucleotide to glyceraldehyde 3-phosphate dehydrogenase. Biochemistry 7, 4011–4023 (1968).

    PubMed  CAS  Google Scholar 

  • Corwin, L. M., Fanning, G. R.: Studies of parameters affecting the allosteric nature of phosphoenolpyruvate carboxylase of Escherichia coli. J. biol. Chem. 243, 3517–3525 (1968).

    PubMed  CAS  Google Scholar 

  • Cowan, S. L.: The action of potassium and other ions on the injury potential and action current in Maja nerve. Proc. roy. Soc. B. 115, 216–260 (1934).

    CAS  Google Scholar 

  • Culvenor, C. C. J., Ham, N. S.: The proton magnetic resonance spectrum and conformation of acetylcholine. Chem. Commun. 15, 537–539 (1966).

    Google Scholar 

  • Davies, D. R., Green, A. L.: Results quoted under contributions to the general discussion. In: The physical chemistry of enzymes. Discussions Faraday Soc. 20, 269 (1955).

    Google Scholar 

  • — — The kinetics of reactivation, by oximes, of Cholinesterase inhibited by organophosphorus Biochem. J. 63, 529–535 (1956).

    PubMed  CAS  Google Scholar 

  • Davison, A. N.: Return of Cholinesterase activity in the rat after inhibition by organophosphorus compounds. A comparative study of true and pseudo Cholinesterase. Biochem. J. 60, 339–346 (1955).

    PubMed  CAS  Google Scholar 

  • Deal, W. J., Erlanger, B. F., Nachmansohn, D.: Photoregulation of biological activity by photochromic reagents. III. Photoregulation of bioelectricity by acetylcholine receptor inhibitors. Proc. natl. Acad. Sci. (Wash.) 64, 1230–1234 (1969).

    CAS  Google Scholar 

  • DeLorenzo, A. J. D., Dettbarn, W.-D., BrzĂŻn, M.: Fine structure and organization of nerve fibers and giant axons in lobster Homarus americanus. J. Ultrastruc. Res. 24, 367–384 (1968).

    Google Scholar 

  • Dettbarn, W.-D.: New evidence for the role of acetylcholine in conduction. Biochim. biophys. Acta (Amst.) 41, 377–386 (1960a).

    CAS  Google Scholar 

  • — The effect of curare on conduction in myelinated, isolated nerve fibers of the frog. Nature (Lond.) 186, 891–892 (1960b).

    CAS  Google Scholar 

  • Dettbarn, W.-D.: The acetylcholine system in peripheral nerve. In: Symposium on cholinergic mechanism. Ehrenpreis, S. (Ed.). Ann. N. Y. Acad. Sci. 144, 483–503 (1967).

    Google Scholar 

  • — Bartels, E., Hoskin, F. C. G., Welsch, F.: Spontaneous reactivation of organophosphorus inhibited electroplax Cholinesterase in relation to acetylcholine induced depolarization. Biochem. Pharmacol., 1970.

    Google Scholar 

  • — Davis, F. A.: Effets of acetylcholine on axonal conduction of lobster nerve. Biochim. bio-phys. Acta (Amst.) 66, 397–405 (1963).

    CAS  Google Scholar 

  • — Rosenberg, P.: Sources of error in relating electrical and acetylcholinesterase activity. Biochem. Pharmacol. 11, 1025–1030 (1962).

    PubMed  CAS  Google Scholar 

  • — — Effects of ions on the efflux of acetylcholine from peripheral nerve. J. gen. Physiol. 50, 447–460 (1966).

    PubMed  CAS  Google Scholar 

  • — — Nachmansohn, D.: Restoration by a specific chemical reaction of “irreversibly” blocked axonal electrical activity. Life Sci. 3, 55–60 (1964).

    PubMed  CAS  Google Scholar 

  • Eccles, J. C.: After-discharge from the superior cervical ganglion. J. Physiol. 84, 50P–52P (1935).

    Google Scholar 

  • Elbers, P. F.: The cell membrane: image and interpretation. In: Recent progress of surface science. Vol. 2. 443–503. Pankhurst, K. G. A., Riddiford, A. C., Eds. New York: Academic Press 1964.

    Google Scholar 

  • Ellman, G. L.: Tissue sulfhydryl groups. Arch. Biochem. 82, 70–77 (1959).

    PubMed  CAS  Google Scholar 

  • Erlanger, J.: The initiation of impulses in axons. J. Neurophysiol. 2, 370–379 (1939).

    Google Scholar 

  • Feldberg, W., Vartiainen, A.: Further observations on the physiology and pharmacology of a sympathetic ganglion. J. Physiol. 83, 103–128 (1934).

    PubMed  CAS  Google Scholar 

  • Fessard, A.: Some basic aspects of the activity of electric plates. Ann. N. Y. Acad. Sci. 47, 501–514 (1946).

    Google Scholar 

  • — Les organes Ă©lectriques. In: TraitĂ© de Zoologie, Vol. XIII. Grasse, P.-P. (Ed.). Paris: Masson 1958.

    Google Scholar 

  • Frederiksson, T., Tibbling, G.: Reversal of effects on the rat nerve-diaphragm preparation produced by methylfluorophosphoryl cholines. Biochem. Pharmacol. 2, 63–67 (1959A).

    Google Scholar 

  • — — Demonstration of direct cholinergic receptor effects of methylfluorophosphorylcholine. Biochem. Pharmacol. 2, 286–289 (1959B).

    Google Scholar 

  • — — Inhibition of Cholinesterase with methylfluorophosphorylcholine and -carbocholine, spontaneous return of activity. Biochem. Pharmacol. 3, 184–189 (1960).

    Google Scholar 

  • Furchgott, R. F.: Receptor mechanisms. Ann. Rev. Pharmacol. 4, 21–50 (1964).

    CAS  Google Scholar 

  • Gerhart, J. C., Pardee, A. B.: The enzymology of control by feedback inhibition. J. biol. Chem. 237, 891–896 (1962).

    PubMed  CAS  Google Scholar 

  • — — The effect of the feed-back inhibitor, CTP, on subunit interactions in aspartate trans-carbamylase. Cold Spr. Harb. Symp. quant. Biol. 28, 491–496 (1963).

    CAS  Google Scholar 

  • — Schachman, H. K.: Distinct subunits for the regulation and catalytic activity of aspartate transcarbamylase. Biochemistry 4, 1054–1062 (1965).

    PubMed  CAS  Google Scholar 

  • Gold, A. M., Fahrney, D.: Sulfonyl fluorides as inhibitors of esterase. II. Formation and reactions of phenylmethanesulfonyl α-chymotrypsin. Biochemistry 3, 783–791 (1964).

    PubMed  CAS  Google Scholar 

  • Goldstein, L., Levin, Y., Katchalski, E.: A water-insoluble polyanionic derivative of trypsin. II. Effect of the polyelectrolyte carrier on the kinetic behavior of the bound trypsin. Biochemistry 3, 1913–1920 (1964).

    PubMed  CAS  Google Scholar 

  • Green, D. E., MacLennan, D. H.: Structure and function of the mitochondrial cristael membrane. Bioscience 19, 213–222 (1969).

    CAS  Google Scholar 

  • — Perdue, J. F.: Membranes as expressions of repeating units. Proc. nat. Acad. Sci. (Wash.) 55, 1295–1302 (1966).

    CAS  Google Scholar 

  • — Silman, I.: Structure of the mitochondrial electron transfer chain. Ann. Rev. Plant Physiol. 18, 147–178 (1967).

    Google Scholar 

  • Grundfest, H.: The mechanism of discharge of the electric organs in relation to general and comparative elctrophysiology. Progr. Biophys. 7, 1–85 (1957).

    CAS  Google Scholar 

  • — Nachmansohn, D., Rothenberg, M. A.: Effect of diisopropyl fluorophosphate (DFP) on action potential and Cholinesterase of nerve III. J. Neurophysiol. 10, 155–164 (1947).

    PubMed  CAS  Google Scholar 

  • GĂĽnther, W. H. H., Mautner, H. G.: Analogs of parasympathetic neuroeffectors I. Acetyl-selenocholine, selenocholine and related compounds. J. med. Chem. 7, 229–232 (1964).

    Google Scholar 

  • Haber, J. E., Koshland, jr. D. E.: Relation of protein subunit interactions to the molecular species observed during cooperative binding of ligands. Proc. natl. Acad. Sci. (Wash.) 58, 2087–2093 (1967).

    CAS  Google Scholar 

  • Hecht, S., Shlaer, S., Pirenne, M. H.: Energy, quanta, and vision. J. gen. Physiol. 25, 819–840 (1942).

    PubMed  CAS  Google Scholar 

  • Heilbronn, E.: Hydrolysis of carboxylic acid esters of thiocholine. Acta chem. scand. 12, 1492–1505 (1958).

    CAS  Google Scholar 

  • Hestrin, S.: Acylation reactions mediated by purified acetylcholine esterase. J. biol. Chem. 180, 879–881 (1949).

    PubMed  CAS  Google Scholar 

  • — Acylation reactions mediated by purified acetylcholine esterase II. Biochim. biophys. Acta (Amst.) 4, 310–321 (1950).

    CAS  Google Scholar 

  • Higman, H. B., Bartels, E.: The competitive nature of the action of acetylcholine and local anestetics. Biochim. biophys. Acta (Amst.) 54, 543–554 (1961).

    CAS  Google Scholar 

  • — — New method for recording electrical characteristics of the monocellular electroplax. Biochim. biophys. Acta (Amst.) 57, 77–82 (1962).

    CAS  Google Scholar 

  • — Podleski, T. R., Bartels, E.: Apparent dissociation constants between carbamylcholine, d-tubocurarine and the receptor. Biochim. biophys. Acta (Amst.) 75, 187–193 (1963).

    CAS  Google Scholar 

  • — — — Correlation of membrane potential and K flux in the electroplax of Electrophorus. Biochim. biophys. Acta (Amst.) 79, 138–150 (1964).

    CAS  Google Scholar 

  • Hill, A. V.: The heat production of muscle. In: Molecular biology. Elementary processes of nerve conduction and muscle contraction. Nachmansohn, D. (Ed.). New York: Academic Press 1960.

    Google Scholar 

  • Hille, M. B., Koshland, jr. D. E.: The environment of a reported group at the active site of chymotrypsin. J. Amer. Chem. Soc. 89, 5945–5951 (1967).

    CAS  Google Scholar 

  • Hinterbuchner, L. P., Nachmansohn, D.: Electrical activity evoked by a specific chemical reaction. Biochim. biophys. Acta (Amst.) 44, 554–560 (1960).

    CAS  Google Scholar 

  • Hobbiger, F. W.: Inhibition of cholinesterases by irreversible inhibitors in vitro and in vivo. Brit. J. Pharmacol. 6, 21–30 (1951).

    PubMed  CAS  Google Scholar 

  • — Effect of nicotinehydroxamic acid methiodide on human plasma Cholinesterase inhibited by organophosphates containing a dialkyl phosphato group. Brit. J. Pharmacol. 10, 356–362 (1955).

    PubMed  CAS  Google Scholar 

  • — Protection against the lethal effects of organophosphates by pyridine-2-aldoxime methiodide. Brit. J. Pharmacol. 12, 438–446 (1957).

    PubMed  CAS  Google Scholar 

  • — Reactivation of phosphorylated acetylcholinesterase. In: Handb. d. experiment. Pharma kologie. S. 921–988. Ergw, XV., Koelle, G. B., Hrg. Berlin-Göttingen-Heidelberg: Springer 1963.

    Google Scholar 

  • — Pitmann, M., Sadler, P. W.: Reactivation of phosphorylated acetocholinesterases by pyridinium aldoximes and related compounds. Biochem. J. 75, 363–372 (1960).

    PubMed  CAS  Google Scholar 

  • — Sadler, P. W.: Protection by oximes of bis-pyridinium ions against lethal diisopropyl phosphonofluoridate poisoning. Nature (Lond.) 182, 1672 (1958).

    CAS  Google Scholar 

  • — — Protection against lethal organophosphate poisoning by quaternary pyridine aldoximes. Brit. J. Pharmacol. 14, 192–201 (1959).

    PubMed  CAS  Google Scholar 

  • Hodgkin, A. L.: The ionic basis of electrical activity in nerve and muscle. Biol. Rev. 26, 338–409 (1951).

    Google Scholar 

  • — The conduction of the nervous impulse. Springfield, Ill.: C. Thomas Publ. 1964.

    Google Scholar 

  • Hoskin, F. C. G., Kremzner, L. T., Rosenberg, P.: Effects of some Cholinesterase inhibitors on the squid giant axon. Biochem. Pharmacol. 18, 1727–1737 (1969).

    PubMed  CAS  Google Scholar 

  • — Rosenberg, P.: Penetration of sugars, steroids, amino acids and other organic compouns into the interior of the squid giant axon. J. gen. Physiol. 49, 47–56 (1965).

    PubMed  CAS  Google Scholar 

  • — — Brzin, M.: Reexamination of the effect of DFP on electrical and Cholinesterase activity of squid giant axons. Proc. nat. Acad. Sci. (Wash.) 55, 1231–1235 (1966).

    CAS  Google Scholar 

  • Howarth, J. V., Keynes, R. D., Ritchie, J. M.: The origin of the initial heat associated with a single impulse in mammalian non-myelinated nerve fibres. J. Physiol. (Lond.) 194, 745–793 (1968).

    CAS  Google Scholar 

  • Hubbard, J. I., Schmidt, R. F.: An electrophysiological investigation of mammalian motor nerve terminals. J. Physiol. 166, 145–167 (1963).

    PubMed  CAS  Google Scholar 

  • Hunneus-Cox, F., Smith, F. H.: The effects of oxidizing, reducing, and sulfhydryl reagents on the resting and action potentials of the internally perfused axon of Loligo pealeii. Biol. Bull. 129, 408 (1965).

    Google Scholar 

  • Jansen, E. F., Nutting, M. D. E., Balls, A. K.: Mode of inhibition of chymotrypsin by diisopropylfluorophosphate. I. Introduction of phosphorus. J. biol. Chem. 179, 201–204 (1949).

    PubMed  CAS  Google Scholar 

  • Karlin, A.: The association of acetylcholinesterase and of membrane in subcellular fractionations of the electric tissue of Electrophorus. J. Cell Biol. 25, 159–169 (1965).

    PubMed  CAS  Google Scholar 

  • — On the application of a plausible model of allosteric proteins to the receptor for acetylcholine. J. theor. Biol. 16, 306–320 (1967 A)).

    PubMed  CAS  Google Scholar 

  • — Chemical distinctions between acetylcholinesterase and the acetylcholine-receptor. Biochim. biophys. Acta (Amst.) 137, 358–362 (1967B).

    Google Scholar 

  • — Chemical modification of the active site of the acetylcholine receptor. J. gen. Physiol. 54, 245s–264s (1969).

    CAS  Google Scholar 

  • — Bartels, E.: Effects of blocking sulfhydryl groups and or reducing disulfide bonds on the acetylcholine-activated permeability system of the electroplax. Biochim. biophys. Acta (Amst.) 126, 525–535 (1966).

    CAS  Google Scholar 

  • — Winnik, M.: Reduction and specific alkylation of the receptor for acetylcholine. Proc.nat. Acad. Sci. (Wash.) 60, 668–674 (1968).

    CAS  Google Scholar 

  • Kartha, G., Bello, J., Harker, D.: Tertiary structure of ribonuclease. Nature (Lond.) 213, 862–965 (1967).

    CAS  Google Scholar 

  • Katchalsky, A., Curran, P. F.: Nonequilibrium Thermodynamics in Biophysics. Harvard: University Press 1965.

    Google Scholar 

  • Katz, B., Miledi, R.: Propagation of electrical activity in motor nerve terminals. Proc. roy. Soc. B. 161, 453–482 (1965).

    CAS  Google Scholar 

  • Kaufman, H., Vratsanos, S. M., Erlanger, B. F.: Photoregulation of an enzymatic process by means of a light-sensitive ligand. Science 162, 1487–1488 (1968).

    PubMed  CAS  Google Scholar 

  • Kendrew, J. C.: Side-chain interactions in myoglobin. Brookhaven Symp. Biol. 15, 216–228 (1962).

    PubMed  CAS  Google Scholar 

  • — Myoglobin and the structure of the proteins. Science 139, 1259–1266 (1963).

    PubMed  CAS  Google Scholar 

  • Kennedy, E. P.: Some recent developments in the biochemistry of membranes. In: The neurosciences. P. 271–280. Quarton, G. C., Melnechuk, T., Schmitt, F. O., Eds. New York: Rockefeller Univ. Press 1967.

    Google Scholar 

  • Kewitz, H.: A specific antidote against lethal alkylphosphate intoxication. III. Repair of chemical lesion. Arch. Biochem. 66, 263–270 (1957).

    PubMed  CAS  Google Scholar 

  • — Nachmansohn, D.: A specific antidote against lethal alkyl phosphate intoxication. IV. Effects in brain. Arch. Biochem. 66, 271–283 (1957).

    PubMed  CAS  Google Scholar 

  • — Wilson, I. B., Nachmansohn, D.: A specific antidote against lethal phosphate intoxication. II. Antidotal properties. Arch. Biochem. 64, 456–465 (1956).

    PubMed  CAS  Google Scholar 

  • Keynes, R. D., Aubert, X.: Energetics of the electric organ. Nature (Lond.) 203, 261–264 (1964).

    CAS  Google Scholar 

  • Keynes, R. D., Martins-Ferreira, H.: Membrane potentials in the electroplates of the electric eel. J. Physiol. (Lond.) 119, 315–351 (1953).

    CAS  Google Scholar 

  • Kirschner, K., Eigen, M., Bittman, R., Voigt, B.: The binding of nicotinamide-adenine dinucleotide to yeast D-glyceraldehyde-3-phosphate dehydrogenase: Temperature-jump relaxation studies on the mechanism of an allosteric enzyme. Proc. natl. Acad. Sci. (Wash.) 56, 1661–1667 (1966).

    CAS  Google Scholar 

  • Kirtley, M. E., Koshland, jr. D. E.: Models for cooperative effects in proteins containing subunits. Effects of two interacting ligands. J. biol. Chem. 242, 4192–4205 (1967).

    PubMed  CAS  Google Scholar 

  • Kitz, R. J., Kremzner, L. T.: Conformational changes of acetylcholinesterase. Mol. Pharmacol. 4, 104–107 (1968).

    PubMed  CAS  Google Scholar 

  • — Wilson, I. B.: Acceleration of the rate of reaction of methanesulfonyl fluoride and acetylcholinesterase by substituted ammonium ions. J. biol. Chem. 238, 745–748 (1963).

    PubMed  CAS  Google Scholar 

  • Koelle, G. B.: Cholinesterase and anticholinesterase agents. In: Handbuch d. experiment. Pharmakologie. Koelle, G. B. (Hrg.). Berlin-Göttingen-Heidelberg: Springer 1963.

    Google Scholar 

  • Korn, E. D.: Structure of biological membranes. Science 153, 1491 (1966).

    PubMed  CAS  Google Scholar 

  • — Cell membranes: structure and synthesis. Ann. Rev. Biochem. 263–288 (1969).

    Google Scholar 

  • Koshland, D. E. Jr.: The active site and enzyme action. Advanc. Enzymol. 22, 45–97 (1960).

    CAS  Google Scholar 

  • — Neet, K. E.: The catalytic and regulatory properties of enzymes. Ann. Rev. Biochem. 37, 359–410 (1968).

    PubMed  CAS  Google Scholar 

  • — Strumeyer, D. H., Ray, W. J., Jr.: Amino acids involved in the action of chymotrypsin. In: Enzyme models and enzyme structure. Brookhaven Symp. Biol. 15, 101–133 (1962).

    Google Scholar 

  • Krupka, R. M.: Hydrolysis of neutral substrates by acetylcholinesterase. Biochemistry 5, 1983–1988 (1966).

    PubMed  CAS  Google Scholar 

  • — Chemical structure and function of the active center of acetylcholinesterase. Biochemistry 5, 1988–1997 (1966).

    PubMed  CAS  Google Scholar 

  • Lawler, H. C.: Turnover time of acetylcholinesterase. J. biol. Chem. 236, 2296–2301 (1961).

    PubMed  CAS  Google Scholar 

  • Leuzinger, W., Baker, A. L.: Acetylcholinesterase. I. Large scale purification homogeneity, amino acid analysis. Proc. nat. Acad. Sci. (Wash.) 57, 446–451 (1967).

    CAS  Google Scholar 

  • — — Cauvin, E.: Acetylcholinesterase. II. Crystallization, absorption spectra, isoionic point. Proc. nat. Acad. Sci. (Wash.) 59, 620–623 (1968).

    CAS  Google Scholar 

  • — Goldberg, M., Cauvin, E.: Molecular properties of acetylcholinesterase. J. molec. Biol. 40, 217–225 (1969).

    PubMed  CAS  Google Scholar 

  • Levin, Y., Pecht, M., Goldstein, L., Katchalski, E.: A water-insoluble polyanionic derivative of trypsin. I. Preparation and properties. Biochemistry 3, 1905–1913 (1964).

    PubMed  CAS  Google Scholar 

  • Levitzki, A., Koshland, jr. D. E.: Negative cooperativity in regulatory enzymes. Proc. natl. Acad. Sci. (Wash.) 62, 1121–1128 (1969).

    CAS  Google Scholar 

  • Lewis, P. R., Shute, C. C.: Electron microscope distributions of Cholinesterase in cholinergic neurones. J. Anat. (Lond.) 99, 941 (1965).

    Google Scholar 

  • Linderstrom-Lang, K. U.: Proteins and enzymes. Lane Medical Lectures, p. 8. Stanford: Stanford Univ. Press 1952.

    Google Scholar 

  • Loewenstein, W. R.: Biological membranes: recent progress. Ann. N. Y. Acad. Sci. 137, 403–1048 (1966).

    Google Scholar 

  • Lundin, S. J.: Purification of a Cholinesterase from the body muscle of plaice (Pleuronectes platessa). Acta chem. scand. 21, 2663–2668 (1967).

    PubMed  CAS  Google Scholar 

  • — Hellstroem, B.: The ultrastructural localization of a Cholinesterase in the body muscle of plaice (Pleuronectes platessa). Z. Zeilforsch. 85, 264–270 (1968).

    CAS  Google Scholar 

  • Luzzati, V., Reiss-Husson, F., Rivas, E., Bulik-Krzywicki, T.: Structure and polymorphism in lipid-water systems, and their possible biological implications. Ann. N. Y. Acad. Sci. 137, 409–420 (1966).

    PubMed  CAS  Google Scholar 

  • Martin, R., Rosenberg, P.: Fine structural alterations associated with venom action on squid giant nerve fibers. J. Cell Biol. 36, 341–353 (1968).

    PubMed  CAS  Google Scholar 

  • Masland, R. L., Wigton, R. S.: Nerve activity accompanying fasciculation produced by prostigmine. J. Neurophysiol. 3, 269–275 (1940).

    CAS  Google Scholar 

  • Mautner, H. G.: The molecular basis of drug action. Pharmacol. Rev. 19, 107–144 1 (1967).

    Google Scholar 

  • — Bartels, E., Webb, G. D.: Sulfur and selenium isologs of acetylcholine and choline. IV. Activity in the electroplax preparation. Biochem. Pharmacol. 15, 187–193 (1966).

    PubMed  CAS  Google Scholar 

  • — Chu, S. H., Gunther, W. H. H.: The aminolysis of thioacyl and selenoacyl analogs. J. Amer. Chem. Soc. 85, 3458–3492 (1963).

    CAS  Google Scholar 

  • — GĂĽnther, W. H. H.: The relative reactivity of thioacyl and selenoacyl analogs. J. Amer, chem. Soc. 83, 3342–3343 (1961).

    CAS  Google Scholar 

  • Mazur, A.: An enzyme in animal tissues capable of hydrolyzing the phosphorusfluorine bond of alkyl fluorophosphates. J. biol. Chem. 164, 271–289 (1946).

    PubMed  CAS  Google Scholar 

  • — Membrane Proteins. Proceedings of a symposium sponsored by the New York Heart Association. Boston: Little, Brown & Co. 1969.

    Google Scholar 

  • Mengle, D. C., Casida, J. E.: Inhibition and recovery of brain Cholinesterase activity in house flies poisoned with organophosphate and carbamate compounds. J. Econ. Entomol. 51, 750–755 (1958).

    CAS  Google Scholar 

  • — O’Brien, R. D.: The spontaneous and induced recovery of fly-brain Cholinesterase after inhibition by organophosphates. Biochemistry J. 75, 201–207 (1960).

    CAS  Google Scholar 

  • Meunier, J.-C., Changeux, J.-P.: On the irreversible binding of p-(trimethylammonium)-benzenediazonium fluoroborate (TDF) to acetylcholinesterase from electrogenic tissue. FEBS Letters 2, 224–226 (1969).

    PubMed  CAS  Google Scholar 

  • Monod, J., Changeux, J.-P., Jacob, F.: Allosteric proteins and cellular control systems. J. molec. Biol. 6, 306–329 (1963).

    PubMed  CAS  Google Scholar 

  • — Wyman, J., Changeux, J.-P.: On the nature of allosteric transitions. A plausible model. J. molec. Biol. 12, 88–118 (1965).

    PubMed  CAS  Google Scholar 

  • Mounter, L. A.: Metabolism of organophosphorus anticholinesterase agents. In: Handb. d. experiment. Pharmakologie. Erg. Hrg.: Koelle, G. B. P. 486–504. Berlin-Göttingen-Heidelberg: Springer 1963.

    Google Scholar 

  • Muirhead, H., Perutz, M. F.: Structure of hemoglobin. Nature (Lond.) 199, 633–638 (1963) A

    CAS  Google Scholar 

  • — — Structure of reduced human hemoglobin. Cold Spr. Harb. Symp. quant. Biol. 28, 451–459 (1963B).

    CAS  Google Scholar 

  • Myers, D. K., Kemp, A., Jr.: Inhibition of esterases by the fluorides of organic acids. Nature (Lond.) 173, 33 (1954).

    CAS  Google Scholar 

  • Nachmansohn, D.: Metabolism and function of the nerve cell. Harvey Lect. (1953/1954) 49, 57–99 (1955).

    Google Scholar 

  • — Chemical and molecular basis of nerve activity, p. 235. New York: Academic Press Inc. 1959.

    Google Scholar 

  • — Actions on axons and the evidence for the role of acetylcholine in axonal conduction. In: Handb. d. experiment. Pharmakologie (Hrg. Koelle, G.). Erg. Bd. 15, S. 701–740. Berlin-Göttingen-Heidelberg: Springer 1963.

    Google Scholar 

  • — Choline acetylase. In: Handbuch d. experiment. Pharmakologie. Ergw. 15, p. 40–54. Koelle, G., Hrg. Berlin-Göttingen-Heidelberg: Springer 1963.

    Google Scholar 

  • — Chemical control of ion movements across conducting membranes. In: Symp. on new perspectives in biology. BBA Library 4, 176–204. Ed. by Sela, M. Amsterdam: Elsevier 1964.

    Google Scholar 

  • — Chemical forces controlling permeability changes of excitable membranes during electrical activity. In: Nerve as a tissue. Ed. by Rodahl, K. New York: McGraw Hill Book Co., Inc. (1966 A).

    Google Scholar 

  • — Chemical control of the permeability cycle in excitable membranes during electrical activity. In: Biological membranes: Recent progress. Ed. by Loewenstein, W. Ann. N. Y. Acad. Sci. 137, 877–900 (1966 B).

    Google Scholar 

  • — Properties of the acetylcholine receptor protein analyzed on the excitable membrane of the monocellular electroplax preparation. In: Current aspects of biochemical energetics. Kaplan, N. O., Kennedy, E. P. (Eds.). New York: Academic Press Inc. (1966 C).

    Google Scholar 

  • — La membrane excitable. Macromolecules liĂ©es Ă  la bioĂ©lectrogenèse. Bull. Soc. Chim. biol. (Paris) 10, 1177–1189 (1967).

    Google Scholar 

  • — Proteins in bioelectricity. Proc. nat. Acad. Sci. (Wash.) 61, 1034–1041 (1968).

    CAS  Google Scholar 

  • — Proteins of excitable membranes. J. gen. Physiol. 54, 187s–224s (1969).

    CAS  Google Scholar 

  • — Lederer, E.: Sur la biochemie de la Cholinesterase. Bull. Soc. Chim. biol. (Paris) 21, 797–808 (1939).

    CAS  Google Scholar 

  • — Machado, A. L.: The formation of acetylcholine. A new enzyme “choline acetylase”. J. Neurophysiol. 6, 397–404 (1943).

    CAS  Google Scholar 

  • — Wilson, I. B.: The enzymic hydrolysis and synthesis of acetylcholine. Advanc. Enzymol. 12, 259–339 (1951).

    CAS  Google Scholar 

  • Namba, T., Hiraki, K.: PAM (pyridine-2-aldoxime methiodide) therapy for alkylphosphate poisoning. J. Amer. med. Ass. 166, 1834 (1958).

    CAS  Google Scholar 

  • Neubert, D., Schaefer, J., Kewitz, H.: Reaktivierung der Acetylcholinesterase durch körpereigene Stoffe. Naturwissenschaften 45, 290 (1958).

    CAS  Google Scholar 

  • Nistratova, S. H., Turpaev, T. M.: The reaction of acetylcholine with choline receptors in tissue homogenates. Biochemistry 24, 155–160 (1959).

    Google Scholar 

  • O’Brien, R. D.: The inhibition of Cholinesterase and succinoxidase by malathion and its isomer. J. Econ. Entomol. 49, 484–490 (1956).

    Google Scholar 

  • — Toxic phosphorus esters. Chemistry, metabolism and biological effects. New York: Academic Press Inc. 1960.

    Google Scholar 

  • Oosterbaan, R. A., Warringa, M. G. P. J., Jansz, H. S., Berends, F., Cohen, J. A.: The reaction of pseudoccholinesterase with diisopropyl-phosphorofluoridate (DFP). In: Proc. Intern. Congr. Biochem., 4th Congress, Vienna 1958, Abstr. 4–12 (1959).

    Google Scholar 

  • Overton, E.: Beiträge zur allgemeinen Muskel- und Nervenphysiologie. PflĂĽgers Arch. ges. Physiol. 92, 346–386 (1902).

    CAS  Google Scholar 

  • Palade, G. E.: The organization of living matter. In: The scientific endeavor: Centenn. celebr. of the Nat. Acad. Sci. New York: Rockefeller Inst. Press 1963.

    Google Scholar 

  • Pauling, L., Corey, B. B., Branson, H. R.: The structure of proteins. Two hydrogen-bonded configurations of the polypeptide chain. Proc. Nat. Acad. Sci. (Wash.) 37, 205–211 (1951).

    CAS  Google Scholar 

  • Perutz, M. F.: Proteins and nucleic acids structure and function. Amsterdam: Elsevier 1962.

    Google Scholar 

  • — X-ray analysis of hemoglobin. Science 140, 863–869 (1963).

    PubMed  CAS  Google Scholar 

  • —Bolton, W., Diamond, R., Muirhead, H., Watson, H. C.: Structure of hemoglobin. Nature (Lond.) 203, 687–690 (1964).

    CAS  Google Scholar 

  • Podleski, T. R.: Effects of quaternary ammonium ions on the membrane potential of electroplax. Ph. D. Thesis. New York: Columbia-University (1966).

    Google Scholar 

  • — Distinction between the active sites of acetylcholine-receptor and -esterase. Proc. nat. Acad. Sci. (Wash.) 58, 268–273 (1967).

    CAS  Google Scholar 

  • — Molecular forces acting between ammonium ions and acetylcholine receptor protein. Biochem. Pharmacol. 18, 211–226 (1969).

    PubMed  CAS  Google Scholar 

  • — Meunier, J. C., Changeux, J. P.: Campared effects of dithiothreitol on the interaction of an affinity-labeling reagent with acetylcholin-esterase and the excitable membrane of the electroplax. Proc. natl. Acad. Sci. (Wash.) 63, 1239–1246 (1969).

    CAS  Google Scholar 

  • — Nachmansohn, D.: Similarities between active sites of acetylcholine receptor and acetylcholinesterase with quinolinium ions Proc. nat. Acad. Sci. (Wash.) 56, 1034–1039 (1966).

    CAS  Google Scholar 

  • Pohle, W., Matthies, H.: Ăśber den Mechanismus der Acetylcholinwirkung an der Herzmuskulatur. Arch. Exp. Pathol. Pharmakol. 236, 253 (1959).

    CAS  Google Scholar 

  • Poziomek, E. J., Hackley, B. E., Jr., Steinberg, G. M.: Pyridinium aldoximes. J. Org. Chem. 23, 714 (1958).

    CAS  Google Scholar 

  • — Kramer, D D. N., Fromm, B. W., Mosher, W. A.: Observation of the geometrical isomerism of formyl-1-methylpyridinium iodide oximes; carbinolamine intermediates. J. Org. Chem. 26, 423–427 (1961).

    Google Scholar 

  • — — Mosher, W. A., Michel, H. O.: Configurational analysis of 4-formyl-1-methylpyridinium iodide oximes and its relationship to a molecular complimentary theory on the reactivation of inhibited acetylcholinesterase. J. Amer. chem. Soc. 83, 3916–3917 (1961).

    CAS  Google Scholar 

  • Prince, A. K.: Spectrophotometry study of the acetylcholinesterase-catalyzed hydrolysis of 1-methyl-acetoxyquinolinium iodides. Arch. Biochem. 113, 195–204 (1964).

    Google Scholar 

  • — Properties of choline acetyltransferase isolated from squid ganglia. Proc. natl. Acad. Sci. (Wash.) 57, 1117–1122 (1967).

    CAS  Google Scholar 

  • Racker, E.: Mechanisms in bioenergetics, p. 259. New York: Academic Press Inc. 1965.

    Google Scholar 

  • — Resolution and reconstitution of the inner mitochondrial membrane. Federation Proc. 26, 1335–1340 (1967).

    CAS  Google Scholar 

  • — Resolution and reconstitution of a mammalian membrane. J. gen. Physiol. 54, 38s–49s (1969).

    CAS  Google Scholar 

  • Riker, W. F.: Excitatory and anti-curare properties of acetylcholine and related quaternary ammonium compounds at the neuromuscular junction. Pharmaciol. Rev. 5, 1–86 (1953).

    CAS  Google Scholar 

  • Riker, W. F., Jr., Werner, G., Roberts, J., Kuperman, A. S.: The presynaptic element in neuromuscular transmission. Ann. N. Y. Acad. Sci. 81, 328–344 (1959).

    Google Scholar 

  • Ritchie, J. M.: The action of acetylcholine and related drugs on mammalian non-myelinated nerve fibers. Biochem. Pharmacol. 12 (S), 3 (1963).

    Google Scholar 

  • Robertson, J. D.: The molecular biology of cell membranes. Symp. molec. Biol. Ed. by Nachmansohn, D. New York: Academic Press, Inc. 1960.

    Google Scholar 

  • — The molecular structure and contact relationships of cell membranes. In: Progress in biophysics. Eds.: Katz, B., Butler, J. A. V. New York: Pergamon Press 1960.

    Google Scholar 

  • Rosenberg, P.: In vivo reactivation by PAM of brain Cholinesterase inhibited by paraoxon Biochem. Pharmacol. 3, 212–219 (1960).

    CAS  Google Scholar 

  • — Effects of venoms on the squid giant axon. Toxicon 3, 125–131 (1965).

    PubMed  CAS  Google Scholar 

  • — Use of venoms in studies on nerve excitation. Mem. Inst. Butantan 33, 477–508 (1966).

    PubMed  CAS  Google Scholar 

  • — Condrea, E.: Maintenance of axonal conduction and membrane permeability in presence of extensive phospholipid splitting. Biochem. Pharmacol. 17, 2033–2044 (1968).

    PubMed  CAS  Google Scholar 

  • Rosenberg, P., Dettbarn, W.-D.: Use of venoms in testing for essentiality of Cholinesterase in conduction. In: Animal toxins Toxicon 4 (4), 296 (1967).

    Google Scholar 

  • — Hoskin, F. C. G.: Demonstration of increased permeability as a factor responsible for the effect of acetylcholine on the electrical activity of venom treated axons. J. gen. Physiol. 46, 1065–1073 (1963).

    PubMed  CAS  Google Scholar 

  • — Mautner, H. G., Nachmansohn, D.: Similarity of effects of oxygen, sulfur, and selenium isologs on theacetylcholine receptor in excitable membranes on junctions and axons. Proc. nat. Acad. Sci. (Wash.) 55, 835–838 (1966).

    CAS  Google Scholar 

  • — Ng, K. Y.: Factors in venoms lesding to block of axonal conduction by curare. Biochim. biophys. Acta (Amst.) 75, 116–128 (1963).

    CAS  Google Scholar 

  • — Podleski, T. R.: Ability of venoms to render squid axons sensitive to curare and acetylcholine. Biochim. biophys. Acta (Amst.) 75, 104–115 (1963).

    CAS  Google Scholar 

  • Rothenberg, M. A., Nachmansohn, D.: Studies on Cholinesterase. III. Purification of the enzyme from electric tissue by fractional ammonium sulfate precipitation. J. biol. Chem. 168, 223–231 (1947).

    PubMed  CAS  Google Scholar 

  • — Sprinson, D. B., Nachmansohn, D.: Site of action of acetylcholine. J. Neurophysiol. 11, 111–116 (1948).

    PubMed  CAS  Google Scholar 

  • Rossi-Fanelli, A., Antomni, E., Caputo, A.: Hemoglobin and myoglobin. Advan. Protein Chem. 19, 73–222 (1964).

    CAS  Google Scholar 

  • Rothfield, L., Finkelstein, A.: Membrane biochemistry. Ann. Rev. Biochem. 37, 463–496 (1968).

    PubMed  CAS  Google Scholar 

  • Schaffer, N. K., May, C. S., Jr., Summerson, W. H.: Serine phosphoric acid from diisopropylphosphoryl chymotrypsin. J. biol. Chem. 202, 67–76 (1953).

    PubMed  CAS  Google Scholar 

  • Schlaepfer, W. W., Torack, R. M.: The ultrastructural localization of Cholinesterase activity in the sciatic nerve of the rat. J. Histochem. Cytochem. 14, 369–378 (1966).

    PubMed  CAS  Google Scholar 

  • Schoellmann, G., Shaw, E.: Direct evidence for the presence of histidine in the active center of chymotrypsin. Biochemistry 2, 252–255 (1963).

    PubMed  CAS  Google Scholar 

  • Schoffeniels, E.: An isolated single electroplax preparation. II. Improved preparation for studying ion flux. Biochim. biophys. Acta (Amst.) 26, 585–596 (1957).

    CAS  Google Scholar 

  • — Les bases physiques et chimiques des potentiels bioĂ©lectriques chez Electrophorus electricus L. Thèse d’agrĂ©gation. Univ. de Liege, Liege (1959).

    Google Scholar 

  • — Nachmansohn, D.: An isolated single electroplax preparation I. New data on the effect of acetylcholine and related compounds. Biochim. biophys. Acta (Amst.) 26, 1–15 (1957).

    CAS  Google Scholar 

  • Scott, K. A., Mautner, H. G.: Analogs of parasymathetic neuroeffectors. II. Comparative pharmacological studies of acetylcholine, its thio and seleno analogs and their hydrolysis products. Biochem. Pharmacol. 13, 907–920 (1964).

    PubMed  CAS  Google Scholar 

  • Shaw, E., Mares-Guia, M., Cohen, W.: Evidence for an active-center histidine in trypsin through use of a specific reagent l-chloro-3-tosylamido-7-amino-2-heptanone, the chloromethyl-ketone derived from N-tosyl-1-lysine. Biochemistry 4, 2219 (1965).

    CAS  Google Scholar 

  • Shefter, E., Kennard, O.: Crystal and molecular structure of acetylselenocholine iodide. Science 153, 1389–1390 (1966).

    PubMed  CAS  Google Scholar 

  • — Mautner, H. G.: The crystal and molecular structure of 2,4-dithiouracil. J. Amer. Chem. Soc. 89, 1249–1253 (1967).

    CAS  Google Scholar 

  • — — Acetylcholine and its thiolester and selenolester analogs: Conformation, electron distribution, and biological activity. Proc. natl. Acad. Sci. (Wash.) 63, 1253–1260 (1969).

    CAS  Google Scholar 

  • Silman, I.: Covalent attachment of depolarizing groups to the acetylcholine receptor. In: Colloquium E. Molecular Neurology, 6th FEBS Meeting, Madrid 1969. New York: Academic Press 1970.

    Google Scholar 

  • — Karlin, A.: Effect of local pH changes caused by substrate hydrolysis on the activity of membrane-bound acetylcholinesterase. Proc. nat. Acad. Sci. (Wash.) 58, 1664 (1967).

    CAS  Google Scholar 

  • — — Acetylcholine receptor: covalent attachment of depolarizing groups at the active site. Science 164, 1420–1421 (1969).

    PubMed  CAS  Google Scholar 

  • Singer, S. J.: Covalent labeling of active sites. Advanc. Protein Chem. 22, 1–54 (1967).

    CAS  Google Scholar 

  • — Doolittle, R. F.: Antibody active sites and immunoglobin molecules. Science 153, 13(1966).

    PubMed  CAS  Google Scholar 

  • Sjöstrand, F. D.: A comparison of plasma membranes, cytomembranes and mitochondrial membrane elements with respect to ultrastructural features. J. Ultrastruct. Res. 9, 561– 580 (1963).

    Google Scholar 

  • Sjöstrand, F. D., Barajas, L.: Effect of modifications in conformation of protein molecules on structure of mitochondrial membranes. J. Ultrastruct. Res. 25, 121–155 (1968).

    PubMed  Google Scholar 

  • Smallman, B. N., Fisher, R. W.: Effect of anticholinesterases on acetylcholine levels in insects. Canad. J. Biochem. Physiol. 36, 575–586 (1958).

    PubMed  CAS  Google Scholar 

  • Smith, H. M.: Effects on sulfhydryl-blockade on axonal function. J. cell. comp. Physiol. 51 161–171 (1958).

    CAS  Google Scholar 

  • Stadtman, E. R.: Allosteric regulation of enzyme activity. Advanc. Enzymol. 28, 41–154 (1966).

    CAS  Google Scholar 

  • Sund, H., Weber, K.: The quaternary structure of proteins. Angew. Chem. 5, 231–245 (1966).

    CAS  Google Scholar 

  • Tammelin, L.-E.: Methyl-fluoro-phosphorylcholines. Acta chem. scand. 11, 859–864 (1957).

    CAS  Google Scholar 

  • — Organophosphorylcholines and cholinesterases. Arkiv Kemi 12, 287–298 (1958).

    CAS  Google Scholar 

  • Tasaki, I.: Nerve Excitation. Springfield, Ill.: Charles C. Thomas 1968.

    Google Scholar 

  • Teorell, T.: Transport prosesses and electrical phenomena in ionic membranes. Progr. Biophys. 3, 305–369 (1953).

    CAS  Google Scholar 

  • Torack, R. M., Barrnett, R. J.: Fine structural localization of Cholinesterase activity in the brain stem. Exp. Neurol. 6, 224–244 (1962).

    PubMed  CAS  Google Scholar 

  • Traylor, P. S., Singer, S. J.: The preparation and properties of some tritiated diazonium salts and related compounds. Biochemistry 6, 881–886 (1967).

    PubMed  CAS  Google Scholar 

  • VanAsperen, K.: Mode of action of organophosphorus insecticides. Nature (Lond.) 181, 355–356 (1958).

    Google Scholar 

  • VanHolde, K. E., Baldwin, R. L.: Rapid attainment of sedimentation equilibrium. J. physiol. Chem. 62, 734–743 (1958).

    Google Scholar 

  • Wagner- Jauregg, T., Hackley, B. E., Jr.: Model reactions of phosphorus-containing enzyme inactivators. III. Interaction of imidazole, pyridine and some of their derivatives with dialkyl halogeno-phosphates. J. Amer. chem. Soc. 75, 2125 (1953).

    CAS  Google Scholar 

  • Wald, G.: Molecular basis of visual excitation. Science 162, 230 (1968).

    PubMed  CAS  Google Scholar 

  • Walsh, R. R., Deal, S. E.: Reversible conduction block produced by lipid insoluble quaternary ammonium ions in cetyltrimethylammonium bromide treated nerves. Amer. J. Physiol. 197, 547–550 (1959).

    PubMed  CAS  Google Scholar 

  • Webb, G. D.: Affinity of benzoquinonium and ambenonium derivatives for the acetylcholine receptor, tested on the electroplax, and for acetylcholinesterase in solution. 102, 172–184 (1965).

    CAS  Google Scholar 

  • — Mautner, H. G.: Sulfur and selenium compounds related to acetylcholine and choline. VI. Effects of homocholine derivatives on the electroplax preparation. Biochem. Pharmacol. 15, 2105–2111 (1966).

    PubMed  CAS  Google Scholar 

  • Werner, G., Kuperman, A. S.: Actions at the neuromuscular junction. In: Handb. d. exp. Pharmac. Ergw. XV. Hrg. Koelle, G. B. pp. 570–678. Berlin-Göttingen-Heidelberg: Springer 1963.

    Google Scholar 

  • Wescoe, W. C., Riker, W. F., Jr.: The pharmacology of anti-curare agents. Ann. N. Y. Acad. Sci. 54, 438–455 (1951).

    PubMed  CAS  Google Scholar 

  • Whittacker, V. P.: The application of subcellular fractionation techniques to the study of brain function. Progr. Biophys. Mol. Biol. 15, 41–96 (1965).

    Google Scholar 

  • Wilson, I. B.: Acetylcholinesterase. XI. Reversibility of tetraethyl pyrophosphate inhibition. J. biol. Chem. 190, 111–117 (1951).

    PubMed  CAS  Google Scholar 

  • — Acetylcholinesterase. XII. Further studies of binding forces. J. biol. Chem. 197, 215–225 (1952).

    PubMed  CAS  Google Scholar 

  • — Promotion of acetylcholinesterase activity by the anionic site. Discuss. Faraday Soc. 20, 119–125 (1955).

    Google Scholar 

  • — Acetylcholinesterase. In: The enzymes. Vol. 4, 501–520. Boyer, P. D., Lardy, H., Myr-baeck, K., Eds. New York: Academic Press Inc. 1960.

    Google Scholar 

  • — Bergmann, F., Nachmansohn, D.: Acetylcholinesterase. X. Mechanism of the catalysis of acylation reactions. J. biol. Chem. 186, 781–790 (1950).

    PubMed  CAS  Google Scholar 

  • — Cabib, E.: Acetylcholinesterase. Enthalpies and entropies of activation. J. Amer. chem. Soc. 78, 202–207 (1956).

    CAS  Google Scholar 

  • — Ginsburg, S.: A powerful reactivator of alkylphosphate-inhibited acetylcholinesterase. Biochim. biophys. Acta (Amst.) 18, 168–170 (1955).

    CAS  Google Scholar 

  • Wilson, I. B., Ginsburg, S.: Reactivation of alkylphosphate inhibited acetylcholinesterase by bis quaternary derivatives of 2-PAM and 4-PAM. Biochem. Pharmacol. 1, 200–206 (1958).

    Google Scholar 

  • — Harrison, M. A.: Turnover number of acetylcholinesterase. J. biol. Chem. 236, 2292–2295 (1961).

    PubMed  CAS  Google Scholar 

  • — Quan, C.: Acetylcholinesterase studies on molecular complementariness. Arch. Biochem. 73, 131–143 (1958).

    PubMed  CAS  Google Scholar 

  • Wofsy, L., Bing, D. H., Kumura, J., Parker, D. C.: Affinity labeling of rabbit antisaccharide antibodies. Biochemistry 6, 1981–1988 (1967).

    PubMed  CAS  Google Scholar 

  • — Metzger, H., Singer, S. J.: Affinity labeling: A general method for labeling sites of antibody and enzyme molecules. Biochemistry 1, 1031–1038 (1962).

    PubMed  CAS  Google Scholar 

  • Wyckoff, H. W., Hardman, K. D., Allewell, N. M., Inagami, T., Johnson, L. N., Richards, F. M.: The structure of ribonuclease-S at 3.5 A resolution. J. biol. Chem. 242, 3984–3988 (1967).

    PubMed  CAS  Google Scholar 

  • — — — — Tsernoglou, D., Johnson, L. N., Richards, F. M.: The structure of ribonuclease-S at 6 A resolution. J. biol. Chem. 242, 3749–3753 (1967).

    PubMed  CAS  Google Scholar 

  • Wyman, jr. J.: Linked function and reciprocal effects in hemoglobin: A second look. Advan. Protein Chem. 19, 233–286 (1964).

    Google Scholar 

  • Yphantis, D. A.: Equilibrium ultracentrifugation of dilute solutions. Biochemistry 3, 297–317 (1964).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Nachmansohn, D. (1971). Proteins in Bioelectricity. Acetylcholine-Esterase and -Receptor. In: Loewenstein, W.R. (eds) Principles of Receptor Physiology. Handbook of Sensory Physiology, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-65063-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-65063-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-65065-9

  • Online ISBN: 978-3-642-65063-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics