Skip to main content

Sensory Transduction in Hair Cells

  • Chapter
Principles of Receptor Physiology

Part of the book series: Handbook of Sensory Physiology ((SENSORY,volume 1))

Abstract

The neural mechanism that underlies excitation and sensory processing in the inner ear is unlike that of most other mechanoreceptor-nerve preparations in that the receptor is not a part of the sensory neuron but a specialized epithelial cell which excites the sensory neuron by synaptic transmission. The peripheral excitatory processes take place in several sequential stages, and it is difficult to localize the particular stage at which various output characteristics are contributed. This is also because hair cells are used to subserve different functions in the various organs of hearing and equilibrium. It is not intended here to describe the function of separate end-organs as separate entities but to find basic principles of structure and function of hair cells and their nervous connections on a comparative basis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ades, H. W., Engström, H.: Form and innervation of the vestibular epithelia. In: First symposium on the role of the vestibular organs in the exploration of space. NASA report SP-77. Washington: U. S. G. P. O. 1965.

    Google Scholar 

  • Adolph, A. R.: Spontaneous slow potential fluctuations in the Limulus photoreceptor. J. Gen. Physiol. 48, 297–322 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Afzelius, B. A.: Flimmer flagellum of the sponge. Nature (Lond.) 191, 1318 (1961).

    Article  Google Scholar 

  • Anand, N., Davis, B. D., Armitage, A. K.: The effect of streptomycin on Escherichia coli — uptake of streptomycin by Escherichia coli. Nature (Lond.) 185, 22–23 (1964).

    Article  Google Scholar 

  • Barber, U. C.: Preliminary observations on the fine structure of the octopus statocyst. J. Microscopie 4, 547–550 (1965).

    Google Scholar 

  • Békésy, G. von: Experiments in hearing (Research articles from 1928 to 1958). New York: McGraw Hill Book Co., Inc. 1960.

    Google Scholar 

  • — Some similarities in sensory perception of fish and man. In: Lateral line detectors. Bloomington: Indiana Univ. Press 1967.

    Google Scholar 

  • Bergeijk, W.: The evolution of vertebrate hearing. In: Contributions to sensory physiology, Vol. 2. New York: Academic Press Inc. 1967.

    Google Scholar 

  • Bredberg, G.: Cellular pattern and nerve supply of the human organ of Corti. Acta oto-laryng. (Stockh.) Suppl. 236, 1–135 (1968).

    Google Scholar 

  • Bullock, F. H., Diecke, F. P. J.: Properties of an infrared receptor. J. Physiol. 134, 47–87 (1956).

    PubMed  CAS  Google Scholar 

  • Butler, R. A.: Some experimental observations on the DC resting potentials in the guinea pig cochlea. J. Acoust. Soc. Amer. 37, 429–433 (1965).

    Article  CAS  Google Scholar 

  • Honrubia, V.: Responses of cochlear potentials to changes in hydrostatic pressure. J. Acoust. Soc. Amer. 35, 1188–1192 (1963).

    Article  Google Scholar 

  • Capranica, R., Flock, Å., Frishkopf, L. S.: Microphonic response from the inner ear of the bullfrog. J. Acoust. Soc. Amer. 40, 1262 (1966).

    Article  Google Scholar 

  • Davis, H.: Excitation in auditory receptors. In: Handbook of Physiology. Section I: Neurophysiology. Washington: Amer. Physiol. Soc. 1959.

    Google Scholar 

  • — Some principles of sensory receptor action. Physiol. Rev. 41, 391–416 (1961).

    PubMed  CAS  Google Scholar 

  • — A model for transducer action in the cochlea. Cold Spr. Harb. Symp. quant. Biol. 30, 181–190 (1965).

    CAS  Google Scholar 

  • Dethrage, B. H.: Examination of binaural interaction. J. Acoust. Soc. Amer. 39, 232–249 (1966).

    Article  Google Scholar 

  • Dijkgraaf, S.: The functioning and significance of the lateral-line organs. Biol. Rev. 38, 51–105 (1963).

    Article  PubMed  CAS  Google Scholar 

  • Dohlman, G.: Histochemical studies of vestibular mechanisms. In: Neural mechanisms of the auditory and vestibular system. Springfield, III.: Charles C. Thomas, Publ. 1960.

    Google Scholar 

  • Ormerod, F. C., McLay, K.: The secretory epithelium of the internal ear. Acta oto-laryng. (Stockh.) 50, 243–249 (1959).

    Article  CAS  Google Scholar 

  • Dubin, D. T., Davis, B. D.: The effect of streptomycin on potassium flux in Escherichia coli. Biochem. biophys. Acta (Amst.) 52, 400–402 (1961).

    Article  CAS  Google Scholar 

  • Duvall, J., Flock, Å., Wersäll, J.: The ultrastructure of the sensory hairs and associated organelles of the cochlear inner hair cells, with reference to directional sensitivity. J. Cell. Biol. 29, 497–505 (1966).

    Article  PubMed  Google Scholar 

  • Duvall, A. J., Wersäll, J.: Site of action of streptomycin upon inner ear sensory cells. Acta oto-laryng. (Stockh.) 57, 581–598 (1964).

    Article  CAS  Google Scholar 

  • Eccles, J. C.: The ion mechanisms of excitatory and inhibitory synaptic action. Ann. N. Y. Acad. Sci. 137, 473–494 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Engström, H., Ades, H. W., Hawkins, J. E.: Structure and functions of the sensory hairs of the inner ear. J. Acoust. Soc. Amer. 34, 1356–1363 (1962).

    Article  Google Scholar 

  • Ewald, J. R.: Physiologische Untersuchungen über das Endorgan des Nervus octavus. Wiesbaden: Bergmann 1892.

    Google Scholar 

  • Eyzaguirre, C., Kuffler, S. W.: Processes of excitation in the dendrites and in the soma of single isolated sensory nerve cells of the lobster and crayfish. J. Gen. Physiol. 39, 87–119 (1955).

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Moran, H.: Cell membrane ultrastructure, low- temperature electron microscopy and x-ray diffraction studies of lipoprotein components in lammellar systems. Circulation 26, 1039–1065 (1962).

    PubMed  CAS  Google Scholar 

  • Fex, J.: Auditory activity in centrifugal and centripetal fibers in cat, a study of a feedback system. Acta physiol. scand. Suppl. 189, 1–68 (1962).

    PubMed  CAS  Google Scholar 

  • — Efferent inhibition in the cochlea related to hair cell DC activity of the crossed olivocochlear fibers in the cat. J. Acoust. Soc. Amer. 41, 666–675 (1967).

    Article  CAS  Google Scholar 

  • Flock, Å.: Structure and function of the macula utriculi with special reference to directional interplay of sensory responses as revealed by morphological polarization. J. Cell Biol. 22, 413–431 (1964).

    Article  PubMed  CAS  Google Scholar 

  • — Electron microscopic and electrophysiological studies on the lateral line canal organ. Acta oto-laryng. (Stockh.) Suppl. 199, 1–90 (1965).

    Google Scholar 

  • — Ultrastructure and function in the lateral line organs. In: Lateral line detectors. Bloomington: Indiana Univ. Press 1967.

    Google Scholar 

  • Duvall, A. J.: The ultrastructure of the kinocilium of the sensory cells in the inner ear and lateral line organs. J. Cell Biol. 25, 1–8 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Kimura, R., Lundquist, P.-G., Wersäll, J.: Morphological basis of directional sensitivity of the outer hair cells in the organ of Corti. J. Acoust. Soc. Amer. 34, 1351–1355 (1962).

    Article  Google Scholar 

  • Wersäll, J.: A study of the orientation of the sensory hairs of the receptor cells in the lateral line organ of a fish with special reference to the function of the receptors. J. Cell Biol. 15, 19–27 (1962).

    Article  PubMed  CAS  Google Scholar 

  • Frank, K., Fuortes, M.: Excitation and conduction. Ann. Rev. Physiol. 23, 357–386 (1961).

    Article  CAS  Google Scholar 

  • Friedmann, I.: The chick embryo otocyst: A model ear. J. Laryngol. Otol. 82, 185–202 (1968).

    PubMed  CAS  Google Scholar 

  • Frishkopf, L. S.: Excitation and inhibition of primary auditory neurons in the little brown bat. J. Acoust. Soc. Amer. 36, 1016 (1964).

    Article  Google Scholar 

  • Flock, Å.: Ultrastructure of the basilar papilla in the bullfrog. J. Acoust. Soc. Amer. 41, 1578 (1967).

    Article  Google Scholar 

  • Furshpan, E. J.: Electrical transmission at an excitatory synapse in a vertebrate brain. Science 144, 878–880 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Furukawa, T., Ishii, Y.: Neurophysiological studies on hearing in gold fish. J. Neurophysiol. 30, 1377–1403 (1967 a).

    PubMed  CAS  Google Scholar 

  • — — Effects of static bending of sensory hairs on sound reception in the gold fish. Jap. J. Physiol. 17, 572–588 (1967b).

    Article  CAS  Google Scholar 

  • Gage, P. W., Hubbard, J. I.: Evidence for a poisson distribution of miniature end plate potentials and some implications. Nature (Lond.) 208, 395–396 (1965).

    Article  CAS  Google Scholar 

  • Gibbons, I. R.: The relationship between the fine structure and direction of beat in gill cilia of a lamellibranch mollusc. J. biophys. biochem. Cytol. 11, 179–205 (1961).

    Article  PubMed  CAS  Google Scholar 

  • Goldstein, M.: The auditory periphery. In: Medical Physiology. St. Louis: Mosby 1968. 2, 1465–1498.

    Google Scholar 

  • Görner, P.: Untersuchungen zur Morphologie und Elektrophysiologie des Scitenlinieorgans vom Krallenfrosch (Xenopus laevis Daudin). Z. vergl. Physiol. 47, 316–338 (1963).

    Google Scholar 

  • Gray, E. G., Pumphrey, R. J.: Ultrastructure of the insect ear. Nature (Lond.) 181, 618 (1958).

    Article  CAS  Google Scholar 

  • Griffin, D. R., Webster, F. A., Michael, C. R.: The echolocation of flying insects by bats. Anim. Behav. 8, 141–154 (1960).

    Article  Google Scholar 

  • Grundfest, H.: Synaptic and ephatic transmission. In: Handbook of physiology. Section I: Neurophysiology. Washington: Amer, physiol. soc. 1959.

    Google Scholar 

  • — Effects of drugs on the central nervous system. Ann. Rev. Pharmacol. 4, 341–364 (1964).

    Article  CAS  Google Scholar 

  • — Electrophysiology and pharmacology of different components of bioelectric transducers. Cold Spr. Harb. Symp. quant. Biol. 30, 1–14 (1965).

    CAS  Google Scholar 

  • Gualtierotti, T., Alltucker, D.: The relationship between the unit activity of the utriclesaccule of the frog and information transfer. In: Second symp. on the role of the vestibular organs in space exploration. NASA report SP-115. Washington: U. S. G. P. O. 1966.

    Google Scholar 

  • Guinan, J. J., Jr., Peake, W. T.: Middle ear characteristics of anesthetized cats. J. Acoust. Soc. Amer. 41, 1237–1261 (1967).

    Article  Google Scholar 

  • Hama, K.: A study of the fine structure of the saccular macula of the gold fish. Z. Zellforsch. 94, 155–171 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Håkansson, C. H., and Toremalm, N. G.: Studies on the physiology of the trachea. III. Electrical activity of the ciliary cell layer. Amer. Otol. Rhinol. Laryngol. 75, 1007–1019 (1966).

    Google Scholar 

  • Harris, G. G.: Brownian motion in the cochlear partition. J. Acoust. Soc. Amer. 40, 1264 (1966).

    Article  Google Scholar 

  • Bergeuk, van, W. A.: Evidence that the lateral-line organ responds to the nearfield displacements of sound sources in water. J. Acoust. Soc. Amer. 34, 1831–1841 (1962).

    Article  Google Scholar 

  • Milne, D. C.: Input-output characteristics of the lateral-line organs of Xenopus laevis. J. Acoust. Soc. Amer. 40, 32–42 (1966).

    Article  CAS  Google Scholar 

  • Flock, Å.: Spontaneous and evoked activity from the Xenopus laevis lateral line. In: Lateral Line Detectors. Bloomington: Indiana Univ. Press 1967.

    Google Scholar 

  • Frishkopf, L., Flock, Å.: Receptor potentials in the hair cells of mudpuppy lateral line. J. Acoust. Soc. Amer. 45, 300–301 (1969).

    Article  Google Scholar 

  • — — — Receptor potentials from hair cells of the lateral line. Science 167, 76–79 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Hartline, H. K., Wagner, H. G., MacNichol, E. J.: The peripheral origin of nervous activity in the visual system. Cold Spr. Harb. Symp. quant. Biol. 17, 125–141 (1952).

    CAS  Google Scholar 

  • Hawkins, J.: Cytoarchitectural basis of the cochlear transducer. Cold Spr. Harb. Symp. quant. Biol. 30, 147–157 (1965).

    Google Scholar 

  • Henriksson, N. G., Gleisner, L.: Vestibular activity of experimental variation of labyrinthine pressure. Acta oto-laryng. (Stockh.) 61, 380–386 (1966).

    Article  CAS  Google Scholar 

  • Hibbard, E.: Selective innervation and reciprocal functional suppression from grafted extra labyrinths in amphibians. Expl. Neurol. 10, 271–283 (1964).

    Article  CAS  Google Scholar 

  • Hilding, D. A., Websäll, J.: Cholinesterase and its relation to the nerve endings in the inner ear. Acta oto-laryng. (Stockh.) 55, 205–217 (1962).

    Article  CAS  Google Scholar 

  • Hodgkin, A. L., Huxley, A. F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952).

    PubMed  CAS  Google Scholar 

  • Holst, E. Von: Die arbeitsweise des Statolithenapparates bei Fischen. Z. vergl. Physiol. 32, 60–120 (1950).

    Article  Google Scholar 

  • Horridge, G. A.: Intracellular action potentials associated with the beating of the cilia in ctenophore comb plate cells. Nature (Lond.) 205, 602 (1965).

    Article  Google Scholar 

  • Hubel, D. H., Wiesel, T. N.: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 160, 106–154 (1962).

    PubMed  CAS  Google Scholar 

  • Iurato, S.: Tectorial membrane. In: Submicroscopie structure of the Inner Ear. Oxford: Pergamon Press 1967.

    Google Scholar 

  • Jahnke, V., Lundquist, P.-G., Wersäll, J.: Some morphological aspects on sound perception in birds. Acta Oto-laryng. 67, 583–601 (1969).

    Article  CAS  Google Scholar 

  • Jensen, C.E., Vilstrup, T.: On the chemistry of human cupulae. Acta Oto-laryng. 52, 383 (1960).

    Article  Google Scholar 

  • Jielof, R., Spoor, A., DeFries, H.: The microphonic activity of the lateral line. J. Physiol. 116, 137–157 (1952).

    PubMed  CAS  Google Scholar 

  • Johnston, B. M., Boyle, A. J. F.: Basilar membrane vibration examined with the Möss-bauer Technique. Science 158, 389–390 (1967).

    Article  Google Scholar 

  • Kaneko, A., Hashimoto, H.: Recording site of single cone response determined by an electrode marking technique. Vision Res. 7, 847–851 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Katsuki, Y., Uschiyama, H., Totsuka, G.: Electrical responses of the single hair cell in the ear of fish. Proc. Japan. Acad. 30, 248–255 (1954).

    Google Scholar 

  • — — Note on the hair cell potential of the ear of fish. Proc. Japan. Acad. 31, 99 (1955).

    Google Scholar 

  • Yanagisawa, K., Kanzaki, J.: Tetraethylammonium and tetrodotoxin: effects on cochlear potentials. Science 151, 1544–1545 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Katz, B., Milledi, R.: Tetrodotoxin and neuromuscular transmission. Proc. Roy. Soc. (Lond.) Ser. B. 167, 8–22 (1967).

    Article  CAS  Google Scholar 

  • Kiang, N. Y.-S., Watanabe, T., Thomas, E. C., Clark, L. F.: Discharge patterns of single nerve fibers in the cat’s auditory nerve. Research monograph No. 35. The MIT Press, Cambridge, Massachusetts (1965).

    Google Scholar 

  • Kikuchi, K., Hilding, D. A.: The development of the organ of Corti in the mouse. Acta oto-laryng. (Stockh.) 60, 207–222 (1965).

    Article  CAS  Google Scholar 

  • Kimura, R.: Hairs of the cochlear sensory cells and their attachment to the tectorial membrane. Acta oto-laryng. (Stockh.) 61, 55–72 (1966).

    Article  CAS  Google Scholar 

  • Komnick, H., Komnick, U.: Elektronenmikroskopische Untersuchungen zur Funktionellen Morphologie des Ionentransportes in der Salzdrüse von Larus argentatus. Z. Zellforsch. 60, 163–203 (1963).

    Article  CAS  Google Scholar 

  • Kuiper, J. W.: The microphonic effect of the lateral line organ. Publ. Biophys. Group „Natuurkundig laboratorium”, Groningen, 1–159 (1956).

    Google Scholar 

  • Kusano, K., Livengood, D. R., Werman, R.: Correlation of transmitter release with properties membrane of the presynaptic fiber of the squid giant synapse. J. gen. Physiol. 50, 2579–2601 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Lagrange, J. L.: Oevres de Langrage. Paris: Serret et Darboux 1867–1892.

    Google Scholar 

  • Loewenstein, W. R.: Excitation and inactivation in a receptor membrane. Ann. N. Y. Acad. Sci. 94, 510–534 (1961).

    Article  PubMed  CAS  Google Scholar 

  • — Permeability of membrane junctions. Ann. N. Y. Acad. Sci. 137, 441–472 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Terzuolo, C. A., Washizu, Y.: Seperation of transducer and impulse-generating processes in sensory receptors. Science 142, 1180–1181 (1963).

    Article  PubMed  CAS  Google Scholar 

  • Lowenstein, O.: Comparative physiology of the otolith organs. Brit. Med. Bull. 12, 110 – 114 (1956).

    PubMed  CAS  Google Scholar 

  • Osborne, M. P., Wersäll, J.: Structure and innervation of the sensory epithelia of the labyrinth in the Thornback ray (Raja clavata). Proc. Roy. Soc. Biol. 160, 1–12 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Roberts, T. O. M.: The equilibrium function of the otolith organs of the thornback ray (Raja clavata). J. Physiol. 110, 392–415 (1949).

    PubMed  CAS  Google Scholar 

  • Lowenstein, O., Sand, A.: The individual and integrated activity of the semicircular canals of the elasmobranch labyrinth. J. Physiol. 99, 89–101 (1940).

    PubMed  CAS  Google Scholar 

  • Wersäll, J.: A functional interpretation of the electron microscopic structure of the sensory hairs in the cristae of the eleasmobranch Raja clavata in terms of directional sensitivity. Nature (Lond.) 184, 1807–1810 (1959).

    Article  Google Scholar 

  • Martin, A. R.: Quantal nature of synaptic transmission. Physiol. Rev. 46, 51–66 (1966).

    CAS  Google Scholar 

  • Miledi, R., Slater, C. R.: The action of calcium on neuronal synapses in the squid. J. Physiol. 184, 473–498 (1966).

    PubMed  CAS  Google Scholar 

  • Milsttn, J. H., Jones, G. M.: Trigonometric resolution of neural response from the vestibular otolith organ. In: Digest of the 7th Int. Conf. on Medical and Biological Engineering. Stockholm: Almqvist & Wiksell, 1967.

    Google Scholar 

  • Möller, A. R.: Unit responses in the rat cochlear nucleus to repetitive transient sounds. Acta physiol. scand. 75, 542–551 (1969).

    Article  PubMed  Google Scholar 

  • Retzius, G.: Das Gehörorgan der Wirbeltiere. II. Das Gehörorgan der Reptilien, der Vögel und der Säugetiere. Stockholm: Die Centraldruckerei 1884.

    Google Scholar 

  • Robbins, R. G., Baumknight, R. S., Honrubia, V.: Anatomical distribution of efferent fibers in the 8th cranial nerve of the bullfrog (Rana catesbeiana). J. Acoust. Soc. Amer. 41, 1581 (1967).

    Article  Google Scholar 

  • Robertson, J. D.: The occurence of a subunit pattern in the unit membranes of club endings in Mauthner cell synapses in goldfish brains. J. Cell Biol. 19, 201–221 (1963).

    Article  PubMed  CAS  Google Scholar 

  • Rodieck, R. W., Kiang, N. Y.-S., Gerstein, G. L.: Some quantitative methods for the study of spontaneous activity of single neurons. Biophys. J. 2, 351–368 (1962).

    Article  PubMed  CAS  Google Scholar 

  • Rose, J. E., Brugge, J. F., Anderson, D. J., Hind, J. E.: Phase locked response to low frequency tones in single auditory nerve fibers of the squirrel monkey. J. Neurophysiol. 30, 769–793 (1967).

    PubMed  CAS  Google Scholar 

  • Sand, A.: The mechanism of lateral sense organs of fishes. Proc. Roy. Soc. Biol. 123, 472–495 (1937).

    Article  Google Scholar 

  • Scarpa, A.: Anatomische Untersuchungen des Gehörs und Geruchs. Aus dem Lateinischen original: Anatomicae disquisitiones de audit et olfactu. Ticini 1789. Nürnberg: Kaspeschen Buchhandlung 1800.

    Google Scholar 

  • Schmidt, R. S., Fernandez, C.: Labyrinthine DC potentials in representative vertebrates. J. Cell Comp. Physiol. 59, 311–322 (1962).

    Article  PubMed  CAS  Google Scholar 

  • Schmitt, F. O.: Molecular and ultrastructural correlates of function in neurons, neuronal nets, and the brain. Naturwissenschaften 53, 71–79 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Schuknecht, H. F., Churchill, J. A., Doran, R.: The localization of acetylcholinesterase in the cochlea. Arch, oto-laryng. (Stockh.) 69, 549–559 (1959).

    CAS  Google Scholar 

  • Schwartz, E.: Analysis of surface wave perception in some teleosts. In: Lateral line detectors. Bloomington: Indiana Univ. Press 1967.

    Google Scholar 

  • Schwartzkopff, J.: Vergleichende Physiologie des Gehörs und der Lautäußerungen. Forschr. Zool. 15, 213–336 (1962).

    Google Scholar 

  • Shouten, J. F., Ritsma, R. L., Lopes Cardozo, B.: Pitch of the residue. J. Acoust. Soc. Amer. 34, 1418–1424 (1962).

    Article  Google Scholar 

  • Sjöstrand, F.: A new ultrastructural element of the membranes in mitochondria and of some cytoplasmic membranes. J. Ultrastruct. Res. 9, 340–361 (1963).

    Article  Google Scholar 

  • Smith, C.A., Davis, H., Deatherage, B. H., Gessert, C. F.: DC potentials of the membraneous labyrinth. Amer. J. Physiol. 193, 203–206 (1958).

    PubMed  CAS  Google Scholar 

  • Lowry, O. H., Wu, M. L.: The electrolytes of the labyrinthine fluids. Laryngoscope 64, 141–153 (1954).

    PubMed  CAS  Google Scholar 

  • Sjöstrand, F. S.: A synaptic structure in the hair cells of the guinea pig cochlea. J. Ultrastruct. Res. 5, 184–192 (1961).

    Article  Google Scholar 

  • Spoendlin, H.: Organization of the sensory hairs in the gravity receptors in utricule and saccule of the squirrel monkey. Z. Zellforsch. 62, 701–716 (1964).

    Article  PubMed  CAS  Google Scholar 

  • — Ultrastructural studies of the labyrinth in sequirel monkeys. In: First symposium on the role of the vestibular organs in the exploration of space. NASA report SP-77. Washington U. S. G. P. O.

    Google Scholar 

  • Spoendlin, H.: Some morphofunctional and pathological aspects of the vestibular sensory epithelia. In: Second symposium on the role of the vestibular organs in the exploration of space. NASA repott SO-115. Washington: U. S. G. P. O. 1966.

    Google Scholar 

  • Stopp, P. E., Whitfield, I. C.: Summating potentials in the avian cochlea. J. Physiol. 175, 45–46 (1964).

    Google Scholar 

  • Tasaki, I.: Nerve impulses in individual auditory nerve fibers of guinea pig. J. Neurophysiol. 17, 97–122 (1954).

    PubMed  CAS  Google Scholar 

  • — Afferent impulses in auditory nerve fibers and the mechanism of impulse initiation in the cochlea. In: Neural mechanisms of the auditory and vestibular system. Springfield, III.: Charles C. Thomas, Publ. 1961.

    Google Scholar 

  • Davis, H., Eldredge, D. H.: Exploration of the cochlear potentials in the guinea pig with microelectrodes. J. Acoust. Soc. Amer. 26, 765–773 (1954).

    Article  Google Scholar 

  • Singer, I.: Membrane macromolecules and nerve excitability: A physico-chemical interpretation of excitation in squid giant axons. Ann. N. Y. Acad. Sci. 137, 792–806 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Spyropolous, C. S.: Stria vascularis as a source of endocochlear potential. J. Neurophysiol. 22, 149–155 (1959).

    PubMed  CAS  Google Scholar 

  • Teas, D. C., Eldredge, D. H., Davis, H.: Cochlear responses to acoustic transients: an interpretation of whole nerve action potentials. J. Acoust. Soc. Amer. 34, 1438–1459 (1962).

    Article  Google Scholar 

  • Terzuolo, C. A., Washizu, Y.: Relation between stimulus strength, generator potential and impulse frequency in strech receptor of crustacea. J. Neurophysiol. 25, 56–66 (1962).

    PubMed  CAS  Google Scholar 

  • Thurm, U.: Steps in the transducer process of mechanoreceptors. Symp. zool. Soc. Lond. 23, 199–216 (1968).

    Google Scholar 

  • Trincker, D.: Bestandspotentiale im Bogengangssystem des Meerschweinchens und ihre Änderungen bei experimentellen Cupula-Ablenkungen. Pflügers Arch. ges. Physiol. 264, 351–382 (1957).

    Article  CAS  Google Scholar 

  • — Neuere Untersuchungen zur Elektrophysiologie des Vestibular-Apparates. Naturwissenschaften 46, 344–350 (1959).

    Article  Google Scholar 

  • Vries, H.: Die Reizschwelle der Sinnesorgane als physiologisches Problem. Experientia (Basel) 4, 205–240 (1948).

    Article  Google Scholar 

  • Bleeker, I. D.: The microphonic activity of the labyrinth of the pigeon. — II. The response of the cristae in the semicircular canals. Acta oto-laryng. (Stockh.) 37, 298–306 (1949).

    Article  Google Scholar 

  • Werner, C. F.: Das Labyrinth. Leipzig: Thieme 1940.

    Google Scholar 

  • Wersäll, J.: Studies on the structure and innervation of the sensory epithelium of the cristae ampullares in the guinea pig. Acta oto-laryng. (Stockh.) Suppl. 126, 1–85 (1956).

    Google Scholar 

  • Flock, Å.: Suppression and restoration of the microphonic output from the lateral line organ after local application of streptomycin. Life Sci. 3, 1151–1155 (1964).

    Article  Google Scholar 

  • — — Functional anatomy of the vestibular and lateral line organs. In: Contributions to Sensory Physiology, Vol. I. New York: Academic Press Inc. 1965.

    Google Scholar 

  • — — Lundquist, P.-G.: Structural basis for directional sensitivity in cochlear and vestibular sensory receptors. Cold Spr. Harb. Symp. quant. Biol. 30, 115–145 (1965).

    Google Scholar 

  • Lundquist, P.-G.: Morphological polarization of the mechanoreceptors of the vestibular and acoustic systems. In: Second symp. on the role of the vestibular organs in the exploration of space. NASA report SP-115. Washington: U. S. G. P. O. 1966.

    Google Scholar 

  • Wever, E. G., Bray, C. W.: Action currents in the auditory nerve in response to acoustical stimulation. Proc. nat. Acad. Sci. (Wash.) 16, 344–350 (1930).

    Article  CAS  Google Scholar 

  • Whitfield, I. C., Evans, E. F.: Responses of auditory cortical neurons to stimuli of changing frequency. J. Neurophysiol. 28, 655–672 (1965).

    PubMed  CAS  Google Scholar 

  • Ross, H. F.: Cochlear-microphonic and summating potentials and the outputs of individual hair cell generators. J. Acoust. Soc. Amer. 38, 126–131 (1965).

    Article  CAS  Google Scholar 

  • Wolbarsht, M. L., Hanson, I. E.: Electrical activity in the chemoreceptors of the blowfly. III. Dendritic action potentials. J. gen. Physiol. 48, 673–683 (1965).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Flock, Å. (1971). Sensory Transduction in Hair Cells. In: Loewenstein, W.R. (eds) Principles of Receptor Physiology. Handbook of Sensory Physiology, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-65063-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-65063-5_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-65065-9

  • Online ISBN: 978-3-642-65063-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics