Abstract

Consider the system shown in Fig. 1. A number of open cylindrical vessels are interconnected by pipes. Water flows continuously and rapidly into the first vessel so that it is always liberally overflowing. When the lower tap is opened water flows into the second vessel where the water level begins to rise. Therefore a pressure head develops between the second vessel and the remaining vessels and water flows on into the remaining vessels where also the water levels begin to rise. The closer the water levels approach the constant head of water in the first vessel the slower becomes the rate of rise but, eventually, the water levels in all vessels come into equilibrium with the constant level in the first vessel.

Keywords

Dioxide Chloroform Propane Respiration Halothane 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Clayton, J. I., Parkhottse, J.: Blood trichloroethylene concentrations during anaesthesia under controlled conditions. Brit. J. Anaesthesia 34, 141–148 (1962).CrossRefGoogle Scholar
  2. Eger, E. I., II: Applications of a mathematical model of gas uptake. In: Uptake and distribution of anesthetic agents, pp. 88–103 ( Papper, E. M., Kitz, R. J., Eds.). New York: McGraw-Hill 1963.Google Scholar
  3. Eger, E. I., II: Implications of some simple concepts of partition coefficients. In: Progress in Anesthesiology: Proceedings of the 4th World Congress of Anesthesiologists, Sep 1968, pp. 400–404 ( Boulton, T. B., et al., Eds.). Amsterdam: Excerpta Medica Foundation 1970.Google Scholar
  4. Eger, E. I., II: Severinghaus, J. W.: Effect of uneven pulmonary distribution of blood and gas on induction with inhalation anesthetics. Anesthesiology 25, 620–626 (1964).PubMedCrossRefGoogle Scholar
  5. Eger, E. I., II., Shargel, R.: Solubility of methoxyflurane in human blood and tissue homogenates. Anesthesiology 24, 625–627 (1963).PubMedCrossRefGoogle Scholar
  6. Eger, E. I., II., Shargel, R., Merkel, G.: Solubility of diethyl ether in water, blood and oil. Anesthesiology 24, 676–678 (1963).PubMedCrossRefGoogle Scholar
  7. Epstein, R. M., Rackow, H., Salanitre, E., Wolf, G. L.: Influence of the concentration effect on the uptake of anesthetic mixtures: the second gas effect. Anesthesiology 25, 364–371 (1964).PubMedCrossRefGoogle Scholar
  8. Hills, B. A.: Diffusion versus blood perfusion in limiting the rate of uptake of inert non-polar gases by skeletal rabbit muscle. Clin. Sci. 33, 67–87 (1967).PubMedGoogle Scholar
  9. Larson, C. P., Jr., Eger, E. I., II, Severinghatts, J. W.: (1) Solubility of halothane in blood and tissue homogenates. Anesthesiology 23, 349–355 (1962).PubMedCrossRefGoogle Scholar
  10. Larson, C. P., Jr., Eger, E. I., II, Severinghatts, J. W.: (2) Ostwald solubility coefficients for anesthetic gases in various fluids and tissues. Anesthesiology 28, 686–689 (1962).CrossRefGoogle Scholar
  11. Mapleson, W. W.: Simple analogue for the distribution of inhaled anaesthetics about the body. In: Abstracts of contributed papers, International Biophysics Congress, p. 81. Stockholm 1961.Google Scholar
  12. Mapleson, W. W.: Rate of uptake of halothane vapour in man. Brit. J. Anaesthesia 34, 11–18 (1962).CrossRefGoogle Scholar
  13. Mapleson, W. W.: (1) An electric analogue for uptake and exchange of inert gases and other agents. J. Appl. Physiol. 18, 197–204 (1963).PubMedGoogle Scholar
  14. Mapleson, W. W.: (2) Quantitative prediction of anesthetic concentrations. In: Uptake and distribution of anesthetic agents, pp. 104–119 ( Papper, E. M., Kitz, R. J., Eds.). New York: McGraw-Hill 1963.Google Scholar
  15. Mapleson, W. W.: Inert gas-exchange theory using an electric analogue. J. Appl. Physiol. 19, 1193–1199 (1964).PubMedGoogle Scholar
  16. Munson, E. S., Bowers, D. L.: Effects of hyperventilation on the rate of cerebral anesthetic equilibrium. Calculations using a mathematical model. Anesthesiology 28, 377–381 (1967).PubMedCrossRefGoogle Scholar
  17. Munson, E. S., Eger, E. I., II, Bowers, D. L.: Effects of changes in cardiac output and distribution on the rate of cerebral anesthetic equilibration. Calculation using a mathematical model. Anesthesiology 29, 533–537 (1968).CrossRefGoogle Scholar
  18. Perl, W., Rackow, H., Salanitre, E., Wolf, G. L., Epstein, R. M.: Intertissue diffusion effect for inert fat-soluble gases. J. Appl. Physiol. 20, 621–627 (1965).PubMedGoogle Scholar
  19. Rackow, H., Salanitre, E., Epstein, R. M., Wolf, G. L., Perl, W.: Simultaneous uptake of N2O and cyclopropane in man as a test of compartment model. J. Appl. Physiol. 20, 611–620 (1965).PubMedGoogle Scholar
  20. Sechzer, P. H., Drapps, R. D., Price, H. L.: Uptake of cyclopropane by the human body. J. Appl. Physiol. 14, 887–890 (1959).PubMedGoogle Scholar
  21. Severinghaus, J. W.: Rate of uptake of nitrous oxide in man. J. Clin. Invest. 33, 1183–1189 (1954).PubMedCrossRefGoogle Scholar
  22. Role oflung factors. In: Uptake and distribution of anesthetic agents, pp. 59-71 (PAPPER, E. M., KITZ, R. J., Eds.). New York: McGraw-Rill 1963.Google Scholar
  23. Severinghaus, J. W.: Role of lung factors. In: Uptake and distribution of anesthetic agents, pp. 59–71 ( Papper, E. M., Kitz, R. J., Eds.). New York: McGraw-Hill 1963.Google Scholar

Copyright information

© Springer-Verlag/Berlin · Heidelberg 1972

Authors and Affiliations

  • W. W. Mapleson

There are no affiliations available

Personalised recommendations