Advertisement

Noradrenalin- und Adrenalinkreis (Dopamin)

Vorkommen von Catecholaminen, hauptsächlich von Adrenalin, Noradrenalin und Dopamin im Tierreich
  • Hans Fischer
Part of the Handbuch der experimentellen Pharmakologie / Handbook of Experimental Pharmacology book series (HEP, volume 26)

Zusammenfassung

Catecholamine finden sich schon bei Protozoen und Invertebraten. Während bei den Vertebraten die Funktionen des Noradrenalins und Adrenalins einiger-maßen klargelegt sind, ist das bei Invertebraten weitgehend nicht der Fall. Das ist deshalb verständlich, weil bei Invertebraten von einem sympathischen Inner-vationssystem, wie es die Vertebraten von den poikilothermen bis zu den homoio-thermen Wirbeltieren in steigender Vollkommenheit besitzen, nicht die Rede sein kann. Zwischen dem, was bei Invertebraten (zu Unrecht) als „sympathisches System “bezeichnet wird, und dem sympathischen System der Vertebraten besteht keine Homologie. Es ist deshalb verständlich, daß die Interpretation von Catecholaminwirkungen bei Invertebraten schon rein terminologisch mit Schwierigkeiten verknüpft ist.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Aaron, H.A., Sayre, D.F.: The distribution of dopamine and dopa in various animals and a method for their determination in diverse biological material. J. Pharmacol. exp. Ther. 145, 326–336 (1964).Google Scholar
  2. Abel, J.J., Macht, D.I.: Two cristalline pharmacological agents obtained from the tropical toad. Bufo agua. J. Pharmacol. exp. Ther. 3, 319–377 (1912).Google Scholar
  3. Ackermann, H., Langemann, H.: Aminosäurendecarboxylase im menschlichen Gehirn. Helv. physiol. pharmacol. Acta 18, C5–C6 (1960).Google Scholar
  4. Akers, T.K.: Effects of epinephrine, norepinephrine and some blocking agents on tunicate smooth muscle. Comp. Biochem. Physiol. 29, 813–819 (1969).PubMedGoogle Scholar
  5. Allen, W.J., Barcroft, H., Edholm, O.G.: Action of adrenaline on blood vessels in human skeletal muscle. J. Physiol. (Lond.) 105, 255–267 (1946).Google Scholar
  6. Angelakos, E.T.: Regional distribution of catecholamines in the dog heart. Circulat. Res. 16 I, 39–44 (1965).PubMedGoogle Scholar
  7. —, Fuxe, K., Torchiana, M.L.: Chemical and histochemical evaluation of the distribution of catecholamines in the rabbit and guinea-pig hearts. Acta physiol. scand. 59, 184–192 (1963).PubMedGoogle Scholar
  8. —, Glassman, P.M., Millard, R.W., King, M.: Regional distribution and subcellular localization of catecholamines in the frog hearts. Comp. Biochem. Physiol. 15, 313–324 (1956).Google Scholar
  9. —, Torchiana, M.L.: Positiv inotropic responses and catecholamine content of isolated rabbit atria exposed to tyramine. Acta physiol. scand. 59, 161–168 (1963).PubMedGoogle Scholar
  10. Anton, A.H., Sayre, D.F.: A study of the factors affecting the aluminium oxyde-trihydro-xindole procedure for the analysis of catecholamines. J. Pharmacol. exp. Ther. 138, 360 (1962).PubMedGoogle Scholar
  11. Attardi, G.: Spontaneous peristaltic contractibility in arteries and veins of adult birds and mammals (Rodentia), cultivated in vitro. Demonstration in vivo of a peristaltic activity in the portal vein of Rodents. C. R. Ass. Anat. (Paris) 1955a.Google Scholar
  12. —: Demonstration in vivo and in vitro of peristaltic contraction of the portal vein in adult mammals (Rodents). Nature (Lond.) 176, 76/77 (1955b).Google Scholar
  13. Augustinsson, K. B., Fänge, R., Johnels, A., Oestlund, R.: Histological, physiological and biochemical studies on the heart of two cyclostomes, hagfish (Myxine) and lamprey (Lampetra). J. Physiol. (Lond.) 131, 257–276 (1956).Google Scholar
  14. Axelsson, J., Bueding, E., Bülbring, E.: The inhibitory action of adrenaline on intestinal smooth muscle in relation to its action on Phosphorylase activity. J. Physiol. (Lond.) 156, 357–374 (1961).Google Scholar
  15. —, Bülbring, E.: Metabolic factors affecting the electrical activity of intestinal smooth muscle. J. Physiol. (Lond.) 156, 344–356 (1961).Google Scholar
  16. Bacq, Z.M.: Action de l’adrénaline, de l’ergotamine et de la tyramine sur le ventricule médian isolé de Loligo pealii. C. R. Soc. Biol. (Paris) 114, 1358–1360 (1933).Google Scholar
  17. —: Recherches sur la physiologie du système nerveux autonome. V. Réactions du ventricule médian, des chromatophores et des divers organes isolés d’un mollusque céphalopode (Loligo pealii) à l’adrénaline, l’acétylcholine, l’ergotamine, l’atropine et aux ions K, Ca et Mg. Arch. int. Physiol. 38, 138–159 (1934).Google Scholar
  18. —: L’acétylcholine et l’adrénaline chez les invertébrés. Biol. Rev. 22, 73–91 (1947).PubMedGoogle Scholar
  19. —, Fischer, P.: Nature de la substance sympathicomimétique extraite des nerfs ou des tissus des mammifères. Arch. int. Physiol. 55, 73–91 (1947).PubMedGoogle Scholar
  20. Bain, W.A.: The action of adrenaline and of certain drugs upon the isolated crustacean heart. Quart. J. exp. Physiol. 19, 297–308 (1929).Google Scholar
  21. Baker, W.W., Baker, J.M.: The effects of epinephrine, norepinephrine and acetylcholine on the electrogram of the isolated frog heart. J. Pharmacol. exp. Ther. 113, 132–139 (1955).PubMedGoogle Scholar
  22. Barrington, E.J.W.: The biology of Hemichordata and Protochordata. Edinburgh and London: Oliver and Boyd 1965.Google Scholar
  23. Barton-Browne, L., Dodson, L.F., Hodgson, E.S., Kiraly, J.K.: Adrenergic properties of the cockroach corpus cardiacum. Gen. comp. Endocr. 1, 232–236 (1961a).PubMedGoogle Scholar
  24. —, Hodgson, E.S., Kiraly, J.K.: Stimulation of uterine contraction by extracts of the cockroach Periplaneta. Science 134, 669–670 (1961b).Google Scholar
  25. Bayer, G., Wense, Th.: Über den Nachweis von Hormonen in einzelligen Tieren. II. Adrenalin (Sympathin) in Paramaecium. Pflügers Arch. ges. Physiol. 237, 651–654 (1936).Google Scholar
  26. Baylor, E.R.: Cardiac pharmacology of the cladoceran, Daphnia. Biol. Bull. 83, 165–172 (1942).Google Scholar
  27. Beauvallet, M., Le Breton, E., Salle, M.: Sur l’existence danslesplanchniquede fibres adréna-lino- et nor-adrénalinosecrétrices distinctes. C. R. Acad. Sci. (Paris) 232, 1243–1245 (1951).Google Scholar
  28. Bekker, J.M., Krijgsman, B.J.: Physiological investigations into the heart function of Daphnia. J. Physiol. (Lond.) 115, 249–257 (1951).Google Scholar
  29. Bell, C., Burnstock, G.: Cholinesterases in the bladder of the toad (Bufo marinus). Biochem. Pharmacol. 14, 79–89 (1964).Google Scholar
  30. Bernheim, F.: Action of drugs on the isolated intestine of certain teleost fish. J. Pharmacol. exp. Ther. 50, 216–222 (1934).Google Scholar
  31. —, Blocksom, B.H.: Action of epinephrine on the intestine following stimulation of parasympathetic drugs. Amer. J. Physiol. 100, 313–316 (1923).Google Scholar
  32. Bertler, A.: Effect of reserpine on the storage of catecholamines in brain and other tissues. Acta physiol. scand. 51, 75–83 (1961a).Google Scholar
  33. —: Occurrence and localization of catecholamines in the human brain. Acta physiol. scand. 51, 97–107 (1961b).Google Scholar
  34. —: Occurrence and distribution of catecholamines in brain. Acta physiol. scand. 47, 350–361 (1959 c).PubMedGoogle Scholar
  35. —, Carlsson, A., Rosengren, E.: Release by reserpine of catecholamines from rabbit’s hearts. Naturwissenschaften 43, 521 (1956).Google Scholar
  36. —, —, —: Fluorometric method for differential estimation of the 3–0-methylated derivatives of adrenaline and noradrenaline. Clin. chim. Acta 4, 456–457 (1959).PubMedGoogle Scholar
  37. —, Falck, B., Hillarp, N.-A., Rosengren, E., Torp: A.: Dopamine and chromaffin cells. Acta physiol. scand. 47, 251–258 (1959).PubMedGoogle Scholar
  38. —, Hillarp, N.-A., Rosengren, E.: Storage of new-formed catecholamines in the adrenal medulla. Experientia (Basel) 16, 419–420 (1960a).Google Scholar
  39. —, —, —: Some observations on the synthesis and storage of catecholamines in the adrenaline cells of the suprarenal medulla. Acta physiol. scand. 50, 124–131 (1960b).Google Scholar
  40. —, —, —: Effect of reserpine on the storage of new-formed catecholamines in the adrenal medulla. Acta physiol. scand. 52, 44–48 (1961).Google Scholar
  41. —, Rosengren, A.-M., Rosengren, E.: In vivo uptake of dopamine and 5-hydroxytrypt-amine by adrenal medullary granules. Experientia (Basel), 16, 418–419 (1960).Google Scholar
  42. —, Rosengren, E.: Occurrence and distribution of dopamine in brain and other tissues. Experientia (Basel) 15, 10–11 (1959a).Google Scholar
  43. —, —: On the distribution in brain of monamines and of enzymes responsible for their formation. Experientia (Basel) 15, 382–384 (1959b).Google Scholar
  44. —, —: Brain catecholamine content after sectioning the adrenergic nerves to the brain vessels. Acta physiol. scand. 47, 362–364 (1959d).PubMedGoogle Scholar
  45. Bianchi, S.: The amine secreting neurones in the central nervous system of the earthworm Octolasium complanatum and their possible neurosecretory role. Gen. comp. Endocr. 9, 343–348 (1967).PubMedGoogle Scholar
  46. Black, J.W., Stephenson, J.S.: Pharmacology of a new adrenergic betareceptor blocking compound. Lancet 7251, 311–314 (1962).Google Scholar
  47. Blaschko, H.: L’amine-oxydase chez Sepia officinalis. C. R. Soc. Biol. (Paris) 133, 220–221 (1940).Google Scholar
  48. —: Amine oxydase in Sepia officinalis. J. Physiol. (Lond.) 99, 364–369 (1941).Google Scholar
  49. —: Metabolism and storage of biogenic amines. Experientia (Basel) 13, 9–12 (1957).Google Scholar
  50. —: The development of current concepts of catecholamine formation. Symposium on catechol-amines. Pharmacol. Rev. 11, 307–316 (1959).PubMedGoogle Scholar
  51. —: The amine oxydases of mammalian blood plasma. Advanc. comp. Physiol. Biochem. 1, 67–116 (1962).Google Scholar
  52. —, Bonney, R.: Spermine oxydase and benzylamine oxydase. Distribution development and substrate specifity. Proc. roy. Soc. B 156, 268–279 (1962).Google Scholar
  53. —, Friedman, P. J., Hawes, R., Nilsson, K.: The amine oxydases of mammalian plasma. J.Physiol. (Lond.) 145, 384–440 (1959).Google Scholar
  54. —, Hawes, R.: Observations on spermine oxydase of mammalian plasma. J. Physiol. (Lond.) 145, 124–131 (1959).Google Scholar
  55. —, Hawkins, J.: Amine oxydase in cephalopods. J. Physiol. (Lond.) 118, 88 (1952).Google Scholar
  56. —, Himms, J.M.: Amine in the earthworm. J. Physiol. (Lond.) 120, 445–448 (1953).Google Scholar
  57. —: Enzymic oxydation of amines in decapods. J. exp. Biol. 31, 1–7 (1954).Google Scholar
  58. —, Richter, D., Schlossmann, H.: The oxydation of adrenaline and other amines. Biochem. J. 31, 2187–2196 (1937).PubMedGoogle Scholar
  59. —, Welch, A.D.: Localization of adrenaline in the cytoplasmatic particles of the bovine adrenal medulla. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 219, 17–22 (1953).Google Scholar
  60. Bloom, E.B., Oestlund, E., Adams-Ray, J., Ritzen, M., Sigmanc, A., Nordenstam, H., Lishajko, F., von Etiler, U.S.: Storage and release of catecholamines and the occurrence of a specific submicroscopic granulation in hearts of cyclostomes. Nature (Lond.) 188, 324–325 (1960).Google Scholar
  61. Bloom, G., Oestlund, E., von Euler, U.S., Liskajko, F., Ritzen, M., Adam-Ray, J.: Studies on catecholamine-containing granules of specific cells in cyclostome hearts. Acta physiol. scand. 53, Suppl. 185, 1–34 (1961).Google Scholar
  62. Boeke, J.: The autonomic (enteric) nervous system of Amphioxus lanceolatus. Quart. J. micr. Sci. 77, 623–658 (1935).Google Scholar
  63. —: Die periphere Endausbreitung des sympathischen Systems. Nova Acta Leopoldina N.F. 2, 209–257 (1935a).Google Scholar
  64. —: Innervationsstudien. VII. Der sympathische Darmplexus (Plexus entericus) von Amphioxus lanceolatus und die Bedeutung der interstitiellen Zellen und der Synapsen für den sympathischen Grundplexus. Z. mikr.-anat. Forsch. 38, 544–560 (1935b).Google Scholar
  65. Boltt, R.E., Ewer, D.W.: Studies on the myoneural physiology of Echinodermata. V. The lantern retractor muscle of Parechinus: Response to drugs. J. exp. Biol. 40, 727–73 (1963).PubMedGoogle Scholar
  66. Booz, K.H.: Experimentelle und morphologische Beobachtungen an der Vena portae der weißen Maus. Ann. Univ. sarav. Med. 116–154 (1959).Google Scholar
  67. Bowman, W.V., Zaimis, E.: The effects of adrenaline, noradrenaline and isoprenaline on skelatal muscle contractions in the cat. J. Physiol. (Lond.) 144, 92–107 (1958).Google Scholar
  68. Boyd, A.M.: Intermediate sympathetic ganglia. Brit. med. Bull. 13, 207–212 (1957).PubMedGoogle Scholar
  69. Boyd, H., Burnstock, G., Campbell, G., Jowett, A., O’Shea, J., Wood, M.: The cholinergic blocking action of adrenergic blocking agents in the pharmacological analysis of autonomic innervation. Brit. J. Pharmacol. 20, 418–435 (1963).PubMedGoogle Scholar
  70. Boyd, J.D., Monro, P.A.G.: Partial retention of autonomic function after paravertebral sympathectomy (intermediate lumbar sympathetic ganglia as the probable explanation). Lancet 257, 892–895 (1949).Google Scholar
  71. Brantner, G.: Die Unabhängigkeit des morphologischen Farbwechsels vom physiologischen Farbwechsel bei der Entstehung des Hochzeitskleides des männlichen Bitterlings. Z. vergl. Physiol. 38, 324–333 (1956).Google Scholar
  72. Brodie, B.B., Bogdanski, D.F.: Biogenic amines and drug action in the nervous system of various vertebrate classes. Progr. Brain Res. 8, 234–242 (1964).Google Scholar
  73. —, —, Bonomi, L.: Formation, storage and metabolism of serotonin (5-hydroxytryptamin) and catecholamines in lower vertebrates. In: D. Richter (Editor): Comparative Neuro- chemistry, pp. 367–377. Oxford: Pergamon Press 1964.Google Scholar
  74. Buddenbrook, W. von: Vergleichende Physiologie, Bd. IV, S. 126–127. Hormone. Basel: Birkhäuser-Verlag 1950.Google Scholar
  75. —: Die Physiologie der Chromatophoren. In: W. von Buddenbrook: Vergleichende Physiologie, Bd. 5, Physiologie der Erfolgsorgane, S. 232–311. Basel: Birkhäuser-Verlag 1961.Google Scholar
  76. Bueding, E., Bülbring, Edith: The inhibitory action of adrenaline. Biochemical and biophysical observations. In: Edith Bülbring (Editor): Pharmacology of smooth muscle, pp. 37–56. Oxford: Pergamon Press 1964.Google Scholar
  77. Bülbring, E.: Membrane potentials of smooth muscle fibres of the taenia coli of the guinea-pig. J. Physiol. (Lond.) 125, 302–315 (1954).Google Scholar
  78. —: Changes in configuration of spontaneously discharged spike potentials from smooth muscle of the guinea-pig’s taenia coli. The effect of electronic currents and of adrenaline, acetylcholine and histamine. J. Physiol. (Lond.) 135, 412–425 (1957).Google Scholar
  79. —: Die Physiologie des glatten Muskels. Pflügers Arch. ges. Physiol. 273, 1–17 (1961).Google Scholar
  80. —, Burnstock, G., Holman, M.E.: Excitation and conduction in the smooth muscle of the isolated taenia coli of the guinea-pig. J. Physiol. (Lond.) 142, 420–437 (1958).Google Scholar
  81. Burgers, A.C.J., Boschman, Th. A.C., van Kamer, J.C.: Excitement darkening and the effect of adrenaline on the melanophores of Xenopus laevis. Acta endocr. (Kbh.) 14, 72–82 (1953).Google Scholar
  82. —, Leemreis, W., Dominezak, T., van Oordt, G.J.: Inhibition of the secretion of interme-dine by D-lysergic acid diethylamide (LSD 25) in the toad Xenopus laevis. Acta endocr. (Kbh.) 29, 191 (1958).Google Scholar
  83. —, van Oordt, G. J.: The effect of the skin secretion of Xenopus laevis on its dermal melanophores. Acta endocr. (Kbh.) 23, 265–273 (1956).Google Scholar
  84. Burgers, A.C.H.: Investigation into the action of certain hormones and other substances on the melanophores of the south african clawed toad, Xenopus laevis. Diss. Utrecht 1956 (V. W. van der Wiel & Co. Arnhem).Google Scholar
  85. —: Electrophoretic behavior of pituitary melanocyte-stimulating activities of vertebrate origin. 1st Int. Congr. Endocrin. Copenhagen, Abstract 329–330 (1960).Google Scholar
  86. Burgers, A.C.H.: Occurrence of three electrophoretic components with melanocyte-stimulating activity in extracts of single pituitary glands from ungulates. Endocrinology 68, 698–703 (1961).PubMedGoogle Scholar
  87. —: Melanophore-stimulating hormones in vertebrates. Ann. N. Y. Acad. Sci. 100, 669–677 (1963).PubMedGoogle Scholar
  88. Burn, J.H.: Function of autonomic transmitters. Baltimore: Williams & Wilkins Co. 1956.Google Scholar
  89. —, Rand, M.J.: The depressor action of dopamine and adrenaline. Brit. J. Pharmacol. 13, 471–479 (1958).PubMedGoogle Scholar
  90. —, —: A new interpretation of the adrenergic fibre. In: Advances in pharmacology, Vol. 1, pp. 1–30. Ed. by S. Garattani and P. A. Shore. New York: Academic Press 1962.Google Scholar
  91. —, —: Acetylcholine in adrenergic transmission. Ann. Rev. Pharmacol. 5, 163–182 (1965).Google Scholar
  92. Burnstock, G.: The action of adrenaline on excitability and membrane potential in the taenia coli of the guinea-pig and the effect of DNP on this action and on the action of acetylcholine. J. Physiol. (Lond.) 143, 183–194 (1958).Google Scholar
  93. —, Wood, G.: Innervation of the urinary bladder of the sleepy lizard (Trachysaurus rugosus). II. Physiology and pharmacology. Comp. Biochem. Physiol. 20, 675–690 (1967).Google Scholar
  94. —, Wood, M., O’Shea, J.: Studies on the comparative physiology of the vertebrate autonomic nervous system. Aust. J. Sci. 24, 192 (1961).Google Scholar
  95. Cameron, M.L.: Secretion of an orthodiphenol in the corpus cardiacum of the insect. Nature (Lond.) 172, 349–350 (1953).Google Scholar
  96. Campbell, G., Burnstock, G., Wood, M.: A method for disdinguishing between adrenergic and cholinergic excitatory innervation of smooth muscle. Quart. J. exp. Physiol. 49, 268–276 (1964).PubMedGoogle Scholar
  97. Campos, H.A., Shideman, F.E.: Subcellular distribution of catecholamines in the dog heart. Effects of reserpin and norepinephrine administrations. Int. J. Neuropharmacol. 1, 13–22 (1962).Google Scholar
  98. Cannon, J., Burnstock, G.: Excitatory adrenergic innervation of the fish heart. Comp. Biochem. Physiol. 29, 765–773 (1969).Google Scholar
  99. Cardot, J.: Sur la présence de dopamine dans le système nerveux et ses relations avec la décarboxylation de la dioxyphénylalamine chez le mollusque Helix pomatia. C.R. Acad. Sci. (Paris) 257, 1364–1366 (1963).Google Scholar
  100. Carlsson, A., Falck, B., Hillarp, N.-A., Thieme, G., Torp, A.: A new histochemical method for vizualization of tissue catechol. amines. Med. exp. (Basel) 4, 123–125 (1961).Google Scholar
  101. —, —, —, Torp, A.: Histochemical localization at the cellular level of hypothalamic noradrenaline. Acta physiol. scand. 54, 385–386 (1962).PubMedGoogle Scholar
  102. —, Hillarp, N.-A.: Release of adenosine triphosphate along with adrenaline and noradrena-line following stimulation of the adrenal medulla. Acta physiol. scand. 37, 235–239 (1956a).PubMedGoogle Scholar
  103. —, —: Release of adrenaline from the adrenal medulla of rabbits produced by reserpine. Kgl. Fysiograf. Sällskap. I. Lund 26, Nr. 8, 90–91 (1956b) (zit. nach Callingham).Google Scholar
  104. —, —: On the state of the catecholamines of the adrenal medullary granules. Acta physiol. scand. 44, 163–169 (1958).PubMedGoogle Scholar
  105. —, Hökfelt, B.: The concomitant release of adenosintriphosphate and catecholamines from the adrenal medulla. J. biol. Chem. 227, 243–252 (1957).PubMedGoogle Scholar
  106. Carlsson, A. J.: Contributions to the physiology of the heart of the California hagfish (Bdello-stoma dombergi). Z. allg. Physiol. 4, 259–288 (1904).Google Scholar
  107. Case, J., Buck, J.: Control of flashing in fireflies. II. Role of central nervous system. Biol.Bull. Woods Hole 125, 234–250 (1963).Google Scholar
  108. Chang, P., Fearn, H.J.: Depletion of catecholamines from the rat heart by phenoxybenz-amine, tyramine and reserpine. Aust. J. exp. Biol. med. Sci. 47, 319–323 (1969).PubMedGoogle Scholar
  109. Chong, G.C., Phillis, J.W.: Pharmacological studies on the heart of Tapes waltlingi, a mollusc of the family veneridae. Brit. J. Pharmacol. 25, 481–496 (1965).PubMedGoogle Scholar
  110. Churney, L.: Effect of epinephrine on monophasic action potential of auricular muscle. Amer. J. Physiol. 171, 516–521 (1952).PubMedGoogle Scholar
  111. Cobb, J.L.S.: The distribution of monamines in the nervous system of echinoderms. Comp.Biochem. Physiol. 28, 967–971 (1969).Google Scholar
  112. CIBA Foundation Symposium on adrenergic mechanisms. Boston Mass.: Little, Brown Co. 1961.Google Scholar
  113. Cooper, C.J., De la Lande, I.S., Tyler, M.J.: The catecholamines in lizard heart. Aust. J.exp. Biol. med. Sci. 44, 205–210 (1965).Google Scholar
  114. Cottrell, G. A.: Separation and properties of subcellular particles associated with 5-hydroxy-tryptamine, with acetylcholine and with an unidentified cardioexcitatory substance from Mercenaria nervous tissue. Comp. Biochem. Physiol. 17, 891–907 (1966).Google Scholar
  115. —: Occurrence of dopamine and noradrenaline in the nervous tissue of some invertebrate animals. Brit. J. Pharmacol. 29, 63–69 (1967).PubMedGoogle Scholar
  116. Crescitelli, F., Geissman, T.A.: Invertebrate pharmacology: selected topics. Ann. Rev. Pharmacol. 2, 143–192 (1962).Google Scholar
  117. Crout, H.R., Creveling, C.R., Udenfriend, B.: Norepinephrine metabolism in rat brain and heart. J. Pharmacol. exp. Ther. 132, 269–277 (1961).PubMedGoogle Scholar
  118. CROUT, H.R., MUSKUS, A. J., TRENDELENBURG, U.: Effect of tyramine on isolated guinea-pig atria in relation to the adrenaline stores. Brit. J. Pharmacol. 18, 600–612 (1962).PubMedGoogle Scholar
  119. COUPLAND, R.E.: On the morphology and adrenaline-noradrenaline content of chromaffin tissue. J. Endocr. 9, 194–203 (1953).PubMedGoogle Scholar
  120. — HOLMES, R.L.: The distribution of Cholinesterase in the adrenal glands of the rat, cat and rabbit. J. Physiol. (Lond.) 141, 97–106 (1950).Google Scholar
  121. CURTAIN, C.C., NAYLER, W.G.: The isolation from human blood plasma of a substance having position inotropic action on the isolated toad heart. Biochem. J. 89, 69–75 (1963).PubMedGoogle Scholar
  122. CURTIS, D.J., KERKUT, G.A.: The effect of reserpine on the vesicle content of Helix aspersa cerebral ganglia. J. comp. Biochem. Physiol. 30, 835–840 (1969).Google Scholar
  123. DAHL, E.: Cellular localization of monamines in mollusc nervous system. Proc. XVI. Int. Congr. Zool., Vol. 2, 105 (1963).Google Scholar
  124. DAHL, E. FALCK, B., LINQUIST, M., VON MECKLENBURG, C.: Monamines in mollusc neurons. Kemyl. Fysiograf. Sällskap. i. Lund Förhandl. 32, 89–92 (1962).Google Scholar
  125. — — VON MECKLENBURG, E., MYRHBERG, H.: An adrenergic nervous system in anemones. Quart. J. micr. Sci. 104, 531–534 (1963).Google Scholar
  126. Dahlström, A., Fuxe, K.: Evidence for the existence of monamine neurones in the central nervous system. Acta physiol. scand. 64, Suppl. 247 (1965).Google Scholar
  127. Daly, J.W., Axelrod, J., Witkop, B.: Dynamic aspects of enzymatic O-methylation and-demetylation of catechols in vitro and in vivo. J. biol. Chem. 235, 1155–1159 (1960).PubMedGoogle Scholar
  128. Dawson, A.B.: Evidence for the termination of neurosecretory fibers within the pars intermedia of the hypophysis of the frog Rana pipiens. Anat. Rec. 115, 63–70 (1953).PubMedGoogle Scholar
  129. De la Lande, I.S., Tyler, M.J., Pridmore, B.R.: Pharmacology of the heart of Tiliqua (Trachysaurus) rugosa (the sleepy lizard). Aust. J. exp. Biol. med. Sci. 40, 129–137 (1962).Google Scholar
  130. Dierst, K.E., Ralph, C.L.: Effect of hypothalamic stimulation on melanophores in the frog. Gen. comp. Endocr. 2, 347–353 (1962).Google Scholar
  131. Dimon, Sister M.Th.: Response to phenethylamines and nicotine, and histology of the turtle atria. Amer. J. Physiol. 197, 747–751 (1959).Google Scholar
  132. Dornhorst, A.C., Young, I.M.: The action of adrenaline and noradrenaline on the placental and foetal circulations in the rabbit and guinea-pig. J. Physiol. (Lond.) 118, 282–288 (1952).Google Scholar
  133. Dreyer, N.B.: The action of autonomic drugs on elasmobranch and teleost involuntary muscle. Arch. int. Pharmacodyn. 78, 63–66 (1949).PubMedGoogle Scholar
  134. Drury, A.N., Smith, F.M.: Observations relating to the nerve supply of the coronary artery of the tortoise. Part. I. Direct observations of the artery. Heart 11, 71–79 (1924).Google Scholar
  135. — Sumbal, J.J.: Observations relating to the nerve supply, of the coronary arteries of the tortoise. Part. II. Perfusion of the artery. Heart 11, 267–284 (1924).Google Scholar
  136. Dufour, J.J., Hunziker, N., Posternak, J.M.: Effets inotropes et chronotropes de l’acétyl-choline et de l’adrénaline sur le coeur de la tortue. J. Physiol. (Paris) 48, 521–524 (1956).Google Scholar
  137. Duguid, A.M.E., Heathcote, R. St. A.: The action of drugs in vitro on Cestodes. IL Non-anthelminthic drugs. Arch. int. Pharmacodyn. 84, 159–175 (1950).PubMedGoogle Scholar
  138. Duncan, C. J.: Rhythmic activity in an isolated penis preparation from the freshwater snail, imnaea stagnalis. Z. vergl. Physiol. 48, 295–301 (1964).Google Scholar
  139. Duncanson, D., Stewart, T., Edholm, O.G.: Effect of l-arterenol on the peripheral circulation in man. Fed. Proc. 8, 37 (1949).Google Scholar
  140. Dunér, H., von Euler, U.S., Pernow, B.: Catecholamines and substance P. in the mammalian eye. Acta physiol. scand. 31, 113–118 (1954).PubMedGoogle Scholar
  141. Earl, A. E.: Reserpine (Serpasil) in veterinary practice. J. Amer. vet. med. Ass. 127, 227–233 (1956).Google Scholar
  142. Ecoles, J.C.: The physiology of nerve cells. London: Oxford University Press 1957.Google Scholar
  143. Egghart, Elisabeth, Umrath, K.: Über die Wirkung von Krampfgiften bei den verschiedenen Tiergruppen. Z. vergl. Physiol. 39, 133–162 (1956).Google Scholar
  144. Elliot, K.A.C., Florey, E.: Factor I, inhibitory factor from brain. Assay, conditions in brain. Stimulating and antagonizing substances. J. Neurochem. 1, 181–191 (1956).Google Scholar
  145. Epstein, D.: The responses of the excised batrachian alimentary canal to autonomic drugs. I. Xenopus laevis (the south African clawed toad) pilocarpine, physostigmine, adrenaline. J.Pharmacol. exp. Ther. 43, 653–675 (1931).Google Scholar
  146. Eränkö, O.: Distribution of adrenaline and noradrenaline in the adrenal medulla. Nature (Lond.) 175, 88–89 (1955).Google Scholar
  147. Erspamer, V.: Wirksame Stoffe der hintern Speicheldrüsen der Octopoden und der Hypo-bronchialdrüse der Purpurschnecken. Arzneimittel-Forsch. 2, 253 (1952b).Google Scholar
  148. Esfeld, L.W. von: Verhalten von plexushaltigen und plexusfreien Darmmuskelpräparaten. Arch. exp. Pathol. Pharmakol. 134, 347–386 (1928).Google Scholar
  149. Euler, U.S.,von: A specific sympathomimetic ergone in adrenergic nerve fibres (sympathin) and its relations to adrenaline and noradrenaline. Acta physiol. scand. 12, 73–97 (1947).Google Scholar
  150. Euler, U.S.,von: Presence of catechol amines in visceral organs of fish and invertebrates. Acta physiol. scand. 28, 296–305 (1953).Google Scholar
  151. — III. Epinephrine and norepinephrine. Adrenaline and noradrenaline. Distribution and action. Pharmacol. Rev. 6, 15–22 (1954).Google Scholar
  152. — III Noradrenaline. S. 382. Springfield/I11.: Ch. C. Thomas 1956.Google Scholar
  153. — Distribution and metabolism of catechol hormones in tissues and axones. Recent Progr. Hormone Res. 15, 483–512 (1958).Google Scholar
  154. — Occurrence of catecholamines in Acrania and in invertebrates. Nature (Lond.) 190, 170–171 (1961a).Google Scholar
  155. — Occurrence and distribution of catecholamines in the fish brain. Acta physiol. scand. 52, 62–64 (1961b).Google Scholar
  156. — Noradrenaline. The Harvey Lectures, Series 95, 43–65 (1961c).Google Scholar
  157. — Adrenergic neurohormones. In: U.S. von Euler and H. Heller: Comparative endocrinology, Vol. 2, pp. 209–238. New York: Academic Press 1963.Google Scholar
  158. — Chaves, N., Teodosio, N.: Effect of acetylcholine, noradrenaline, adrenaline and histamine on isolated organs of Aplysia and Holothuria. Acta physiol. lat.-amer. 2, 101–106 (1952).Google Scholar
  159. —— Noradrenaline. The Harvey Lectures, Series 55, 43–65 (1961c).Google Scholar
  160. — Fänge, R.: Catecholamines in nerves and organs of Myxine glutinosa, Squalus acanthias and Gadus callarias. Gen. comp. Endocr. 1, 191–194 (1961).Google Scholar
  161. — Hökfelt, B.: Colorimetric and biological estimation of adrenaline and noradrenaline in suprarenals of guinea-pig. Brit. J. Pharmacol. 8, 66–68 (1953).Google Scholar
  162. — Lishajko, F.: Effect of reserpine on release of noradrenaline from transmitter granules in adrenergic nerves. Science 132, 351–352 (1960b).Google Scholar
  163. —— Effect of reserpine on the release of catecholamines from isolated nerve and chromaffin cell granules. Acta physiol. scand. 52, 137–145 (1961).Google Scholar
  164. —— Improved technique for the fluorimetric estimation of catecholamines. Acta physiol. scand. 51, 348–355 (1961).Google Scholar
  165. — Oestlund, E.: Effects of certain biologically occurring substances in the isolated intestine of fish. Acta physiol. scand. 38, 364–372 (1957).Google Scholar
  166. Ewer, D.W., van den Berg, R.: A note on the pharmacology of the musculature of Peripa-topsis. J. exp. Biol. 31, 497–500 (1954).Google Scholar
  167. Falck, B.: Observations on the possibilities of the cellular localization of monamines by a fluorescence method. Acta physiol. scand. 56, Suppl. 197, 1–25 (1962).Google Scholar
  168. — Cellular localisation of monamines. In: H.E. Himwich and W.H. Himwich (Editors): Progress in brain research, Vol. 8, pp. 28–44. Amsterdam: Elsevier Publ. Co. 1964.Google Scholar
  169. — Häggendal, J., Owman, Ch.: The localization of adrenaline in adrenergic nerves in the frog. Quart. J. exp. Physiol. 48, 253–257 (1963).Google Scholar
  170. — Hillarp, N.A., Högberg, B.: Content and intracellular distribution of adenosine triphosphate in cow adrenal medulla. Acta physiol. scand. 36, 360–376 (1956).PubMedGoogle Scholar
  171. — Owman, C.: A detailed methodological description of the fluorescence method for the cellular demonstration of biogenic monamines. Acta Univ. 1 und II, 1–23 (1965).Google Scholar
  172. —— Torp, A.: A new type of chromaffin cells, probably storing dopamine. Nature (Lond.) 183, 267–268 (1959a).Google Scholar
  173. ——— Some observations on the histology and histochemistry of the chromaffin cells probably storing dopamine. J. Histochem. Cytochem. 7, 323–328 (1959b).PubMedGoogle Scholar
  174. Fänge, R.: The mechanism of gas transport in the eupysoclist swimmbladder. Acta physiol. scand. 30, Suppl. 110, 1–133 (1933).Google Scholar
  175. — Effect of drugs on the intestine of a vertebrate without sympathetic nervous system. Ark. Zool. (Stockh.) 40, A 1–9 (1948).Google Scholar
  176. — Use of the isolated heart of a freshwater mussel (Anodonta cygnea) for biological estimation of 5-hydroxytryptamine. Experientia (Basel) 11, 156–157 (1955).Google Scholar
  177. — Pharmacology of Poikilothermic vertebrates and invertebrates. Pharmacol. Rev. 14, 281–316 (1962).PubMedGoogle Scholar
  178. — Mattisson, A.: Studies on the physiology of the radula-muscle of Buccinum undatum. Acta Zool. (Stockh.) 58, 53–64 (1958).Google Scholar
  179. — Oestlund, E.: The effects of adrenaline, noradrenaline, tyramine and other drugs on the isolated heart from marine vertebrates and a cephalopod (Eledone cirrosa). Acta Zool. (Stockh.) 35, 1–17 (1954).Google Scholar
  180. — Oestlund, E.: The effects of adrenaline, noradrenaline, tyramine and other drugs on the isolated heart from marine vertebrates and a cephalopod (Eledone cirrosa). Acta Zool. (Stockh.) 35, 289–305 (1954).Google Scholar
  181. Ferry, C. B.: The postganglionic fibres of the vas deferens of the guinea-pig. J. Physiol. (Lond.) 169, 72 P (1963).Google Scholar
  182. — Cholinergic link hypothesis in adrenergic neuroeffector transmission. Physiol. Rev. 46, 420–456 (1966).PubMedGoogle Scholar
  183. Fischer, P., Lecomte, J.: Artérénol et adrénaline dans la glande parotoide des crapauds tropicaux. Arch. int. Pharmacodyn. 81, 387–389 (1950a).Google Scholar
  184. Fischer, P., Lecomte, J.: Nature des corps sympathomimétiques dans les glandes parotoides normales et énervées des crapauds tropicaux. Arch. int. Physiol. 57, 277–285 (1950b).PubMedGoogle Scholar
  185. Florey, E.: Untersuchungen über die Natur der Farbwechselhormone der Crustaceen. Biol. Zbl. 71, 499–511 (1952).Google Scholar
  186. — Comparative physiology: transmitter substances. Ann. Rev. Physiol. 23, 501–528 (1961).Google Scholar
  187. — Comparative neurochemistry: inorganic ions, amino acids and possible transmitter substances of invertebrates. In: Elliott, Page and Quastel: Neurochemistry. 2nd Ed. Springfield/Ill.: Charles C. Thomas 1962.Google Scholar
  188. — Acetylcholine in invertebrate nervous systems. Canad. J. Biochem. 41, 2619–2626 (1963).PubMedGoogle Scholar
  189. — Amino-acids as transmitter substances. In: E. Bajusz and G. Jasmin: Major problems in neuroendocrinology, pp. 17–41. Basel/New York: S. Karger 1964.Google Scholar
  190. — Comparative pharmacology: neurotropic and myotropic compounds. Ann. Rev. Pharmacol. 5, 357–382 (1965).Google Scholar
  191. Florey, E.: Über die mögliche Bedeutung des Enteramins (5-Oxytryptamin) als nervöser Aktionssubstanz bei Cephalopoden und dekapoden Crustaceen. Z. Naturforsch. 9b, 58–68 (1954).Google Scholar
  192. Flückiger, E.: Die Wirkung von 1-Adrenalin an Daphnia magna. Kgl. Fysiograf. Sällskap. i. Lund 21, Nr. 6, 1–6 (1951).Google Scholar
  193. — Beiträge zur Verwendung von Daphnia als pharmakologisches Testobjekt. Diss. ETH Zürich 1952 a.Google Scholar
  194. — Über die Wirkung von Sympathomimetica und Dihydroergotamin bei Daphnien. I. Wirkung auf Muskelfunktionen. Acta physiol. scand. 27, 206–216 (1952b).PubMedGoogle Scholar
  195. — Die Wirkung der Sympathomimetica und Dihydroergotamin auf Dahpnien. II. Wirkung auf Stoffwechsel. Acta physiol. scand. 30, 33–44 (1953).PubMedGoogle Scholar
  196. — Zur Biologie der Farbwechselhormone. Verh. Naturforsch. Ges. Basel 73, 194–203 (1962).Google Scholar
  197. — Die Melanocyten stimulierenden Hormone der Adenohypophyse. Arch. exp. Pathol. Phar-makol. 245, 168–184 (1963).Google Scholar
  198. Fontaine, M.M. de, Mazeaud, M., Mazeaud, F.: L’adrénalinémie du Salmo solar L. à quelques étapes de son cycle vital et de ses migrations. C. R. Acad. Sci. (Paris) 256, 4562–4565 (1963).Google Scholar
  199. Forsdahl, K.A.: Mechanism of pigment granule movement in melanophores of the lizard Anolis carolinensis. Nytt. Mag. Zool. 8, 37–44 (1959) (nach Fänge 1962).Google Scholar
  200. Fourneau, E., Bovet, D.: Recherches sur l’action sympatholytique de nouveaux dérivés du dioxane. C. R. Soc. Biol. (Paris) 113, 388–389 (1933).Google Scholar
  201. Fox, D.L.: Animal biochromes. Cambridge: University Press 1953.Google Scholar
  202. Fredericq, H.: Action des nerfs du coeur d’Aplysia limacina: analyse au moyen de la caféine. Arch. int. Physiol. 49, 299–314 (1939).Google Scholar
  203. — Les nerfs cardio-régulateurs des invertébrés et la théorie des médiateurs chimiques. Biol. Rev. 22, 297–314 (1947).PubMedGoogle Scholar
  204. Freeman, M. A.: The effect of drugs on the alimentary canal of the african migratory locust Locusta migratoria. Comp. Biochem. Physiol. 17, 755–764 (1966).PubMedGoogle Scholar
  205. Friedman, M.H.F.: The nervous control of gastric secretion in the frog (Rana esculenta). J. cell. comp. Physiol. 5, 83–95 (1935a).Google Scholar
  206. — A study of the innervation of the stomach of Necturus by means of drugs. Trans. roy. Soc. Can., Sect. V 29, 175–185 (1935b).Google Scholar
  207. — Oesophogeal and gastric secretion in the frog. J. cell. comp. Physiol. 10, 37–50 (1937).Google Scholar
  208. Fries, E.F.B.: Pituitary and nervous control of pigmentary effectors, especially xanthophores in killifish (Fundulus). Physiol. Zool. 16, 199–212 (1943).Google Scholar
  209. Frisch, K. von: Über die Beziehungen der Pigmentzellen in der Fischhaut zum sympathischen Nervensystem. Festschrift R. Hertwig 3 (1910) (nach Buddenbrook, Bd. 5).Google Scholar
  210. Furchgott, R.F.: The receptors of epinephrine and norepinephrine (adrenergic receptors). Symposium on catecholamines. Pharmacol. Rev. 11, 429–441 (1959).PubMedGoogle Scholar
  211. — Receptor mechanisms. Ann. Rev. Pharmacol. 4, 21–50 (1964).Google Scholar
  212. — The pharmacological differentiation of adrenergic receptors. Ann. N.Y. Acad. Sci. 139, 553–570 (1967).PubMedGoogle Scholar
  213. — Beiträge zur Physiologie der Pigmentzellen in der Fischhaut. Pflügers Arch. ges. Physiol. 138, 319–387 (1911).Google Scholar
  214. Fuxe, K.: Cellular localization of monamines in the median eminence and the infundibular stem of some mammals. Z. Zellforsch. 61, 710–724 (1964).PubMedGoogle Scholar
  215. — Ljunggren, L.: Cellular localization of monamines in the upper brain stem of pigeons. J. comp. Physiol. 125, 355–381 (1965).Google Scholar
  216. — Owman, Chr.: Cellular localization of monamines in the arca postrama of certain mammals. J. comp. Neurol. 125, 337–353 (1965).Google Scholar
  217. Gaddum, J.H., Paasonen, M.K.: The use of some molluscan hearts for the estimation of 5-hydroxytryptamine. Brit. J. Pharmacol. 10, 474–483 (1955).Google Scholar
  218. Gaheby, Y., Boistel, J.: Study of some pharmacological substances which modify the electrical activity of the sixth. abdominal ganglion of the cockroach Periplaneta americana. In: Treherne and Beament: The physiology of the insect central nervous system, pp. 73–78. London and New York: Academic Press 1965.Google Scholar
  219. Gardier, R.W., Abreu, B.E., Richards, A.B., Herrlich, H.C.: Specific blockade of the adrenal medulla. J. Pharmacol. exp. Ther. 130, 340–345 (1960).Google Scholar
  220. Garry, R.C.: Innervation of abdominal viscera. Brit. med. Bull. 13, 202–206 (1957).PubMedGoogle Scholar
  221. Gillespie, J.S.: The responses of the musculature of the colon of the rabbit to stimulation, in vitro, of the parasympathetic and of the sympathetic outflows. J. Physiol. (Lond.) 128, 557–576 (1955).Google Scholar
  222. Gaskell, J.F.: Adrenalin in annelids. A contribution to the comparative study of the origin of the sympathetic and the adrenalin-secreting systems and of the vascular muscles which the regulate. J. gen. Physiol. 2, 73–85 (1920).Google Scholar
  223. Gersch, M.: Neurohormonale Beeinflussung der Herztätigkeit bei der Larve von Corethra. J. Insect. Physiol. 2, 281–297 (1958).Google Scholar
  224. — Vergleichende Endokrinologie der wirbellosen Tiere, S. 285 u. 79 ff. Leipzig: Akad. Ver-lagsges. Geest und Portig 1964.Google Scholar
  225. Deuse, R.: Die Wirkung von Neurohormonen aus Insekten auf das Froschherz. Biol. Zbl. 76, 436–442 (1957).Google Scholar
  226. Unger, H.: Nachweis von Neurohormonen aus dem Nervensystem von Dixippus morosus mit Hilfe papierchromatographischer Trennung. Naturwissenschaften 44, 117 (1957).Google Scholar
  227. Fischer, F.: Die Isolierung eines Neurohormons aus dem Nervensystem von Periplaneta americana L. und einige biologische Testverfahren. Wiss. Z. Fr.-Schiller-Univ. Jena, Math.-nat. Reihe 6, 125–129 (1957).Google Scholar
  228. Gerschenfeld, H.M.: A non-cholinergic synaptic inhibition in the central nervous system of molluscs. Nature (Lond.) 203, 415–416 (1964).Google Scholar
  229. Tauc, L.: Pharmacological specifities of neurones in an elementary central nervous system. Nature (Lond.) 189, 924–925 (1961).Google Scholar
  230. Giarman, N.J., Day, M.: Presence of biogenic amines in the bovine pineal body. Biochem. Pharmacol. 1, 235 (1958).Google Scholar
  231. Girolamo, A. de: Sulla morfologia comparata del sistema nervoso sympatico. Ricerche nei selaci. Arch. ital. Anat. Embriol. 54, 367–386 (1950).Google Scholar
  232. Goffart, M.: Recherches relatives à l’action de l’adrénaline sur le muscle strié de mammifère. Arch. int. Physiol. 60, 318–418 (1952).PubMedGoogle Scholar
  233. — The action of L-noradrenaline and adrenochrome on unfatigued mammalian muscle. Pharmacol. Rev. 6, 33–34 (1954).PubMedGoogle Scholar
  234. Ritchie, J.M.: The effect of adrenaline on the contraction of mammalian skeletal muscle. J. Physiol. (Lond.) 116, 357–371 (1952).Google Scholar
  235. Govyrin, V.A., Leontieva, G.R.: Distribution of catecholamines in the myocardium of vertebrates. J. evolutionary Biochem. Physiol. (Leningrad) 1, 38–44 (1965) (Abstract in English).Google Scholar
  236. Graham, J.D.P.: Antagonism by 2-hyloalkylamine compounds on some actions of adrenaline, noradrenaline and isoprenaline on Xenopus laevis. Arch. int. Pharmacodyn. 118, 317–326 (1959).PubMedGoogle Scholar
  237. — The response to catecholamines of the melanophores of Xenopus laevis L. J. Physiol. (Lond.) 158, 5P–6P (1961).Google Scholar
  238. Grauwiler, J.: Reserpinwirkungen beim Pferd. Diss. Vet. Med. Zürich 1958.Google Scholar
  239. Gray, E.G.: Control of the melanophores of the minnow (Phoxinus phoxinus) (L.) J. exp. Biol. 33, 448–459 (1956).Google Scholar
  240. Greenberg, M.J.: The response of the Venus heart to catechol amines and high concentrations of 5-hydroxytryptamines. Brit. J. Pharmacol. 15, 365–374 (1960).PubMedGoogle Scholar
  241. Gregerman, R.I.: Adrenaline and hydroxytyramine in the parotid gland venom of the toad, Bufo marinus. J. gen. Physiol. 35, 483–487 (1952).PubMedGoogle Scholar
  242. Wald, G.: The alleged occurrence of adrenaline in the mealworm. J. gen. Physiol. 35, 489–493 (1952).PubMedGoogle Scholar
  243. Grobecker, H., Holtz, P.: Über die Brenzkatechinamine im Froschherzen und in der Froschhaut vor und nach Verabfolgung von α-Methyldopa. Experientia (Basel) 22, 42–43 (1966).Google Scholar
  244. Grove, D.J.: The effects of adrenergic drugs on melanophores of the minnow, Phoxinus phoxinus (L). Comp. Biochem. Physiol. 28, 37–54 (1969).PubMedGoogle Scholar
  245. Gruber, S.A., Ewer, D.W.: Observations on the myo-neural physiology of the polyclad Planocera gilchristi. J. exp. Biol. 39, 459–477 (1962).Google Scholar
  246. Hackmann, R.H., Pryor, M.G.M., Todd, A.R.: The occurrence of phenolic substances in arthropods. Biochem. J. 43, 474–477 (1948).Google Scholar
  247. Haefeli, H., Gross, F.: Bewegungsstudien an Lymphgefäßen im Mesenterium der Ratte. Helv. physiol. pharmacol. Acta 10, C6 (1952).Google Scholar
  248. Hajdu, S., Leonhard, E.: A serumprotein system affecting contractibility of the frog heart present in increased amounts in patients with essential hypertension. Circulat. Res. 6, 740–750 (1958).PubMedGoogle Scholar
  249. Hama, T., Obika, M.: On the nature of some fluorescent substances of pterintipe in the adult skin of toad, Bufo vulgaris formosus. Experientia (Basel) 5, 182–187 (1958).Google Scholar
  250. Hamberger, B., Norberg, K.-A.: Monamines in sympathetic ganglia, studied with fluorescence microscopy. Experientia (Basel) 19, 580–581 (1963).Google Scholar
  251. Sjöquist, F.: Cellular localization of monamines in sympathetic ganglia of the cat. A preliminary report. Life Sci. 2, 659–661 (1963).Google Scholar
  252. — — Correlated studies of monamines and acetylcholinesterase in sympathetic ganglia, illustrating the distribution of adrenergic and cholinergic neurones. In: G.B. Koelle, W.W. Douglas, A. Carlsson: Pharmacology of cholinergic and adrenergic transmission, pp. 41–54. Oxford: Pergamon Press 1965.Google Scholar
  253. Hanson, F.E., Jr.: Observations of the gross innervation of the firefly light organ. J. Insect. Physiol. 8, 105–112 (1962).Google Scholar
  254. Hartman, W.J., Clark, W.G., Cyr, S.D., Jorden, A.L., Leibold, R.A.: Pharmacologically active amines and their biogenesis in the Octopus. Ann. N.Y. Acad. Sci. 90, 637–666 (1960).PubMedGoogle Scholar
  255. Harvey, E.N.: Bioluminiscence. New York: Academic Press 1952.Google Scholar
  256. Healey, E.G.: The colour change of the minnow Phoxinus laevis AG. J. exp. Biol. 31, 473–490 (1954).Google Scholar
  257. Healy, E.G., Ross, D.M.: The effects of drugs on the background response of the minnow, Phoxinus phoxinus L. Comp. Biochem. Physiol. 19, 545–580 (1966).Google Scholar
  258. Henderson, F.G., Welles, J.S., Chen, K.K.: Parotoid secretions of Bufo blombergi and B. peltocephalus. Proc. Soc. exp. Biol. (N. Y.) 104, 176–178 (1960).Google Scholar
  259. Henze, M.: p-Oxyphenyläthylamin, das Speicheldrüsengift der Cephalopoden. Z. physiol. Chem. 87, 51–58 (1913).Google Scholar
  260. Hermann, H., Jourdan, F., Bonnet, V.: Action sympatholytique et adrenalinoinverse du 2-benzyl-imidazoline. C. R. Soc. Biol. (Paris) 135, 1653–1655 (1941).Google Scholar
  261. Hermansen, K.: The effect of adrenaline, noradrenaline and isoprenaline on the guinea-pig uterus. Brit. J. Pharmacol. 16, 116–128 (1961).PubMedGoogle Scholar
  262. Hess, W.R.: Die funktionelle Organisation des vegetativen Nervensystems. Basel: Benno Schwabe 1948.Google Scholar
  263. Hill, R. B.: The effects of certain neurohormones and of other drugs on the ventricle and radula protractor of Buscyon canaliculatum and on the ventricle of Strombus gigas. Biol. Bull. Woods. Hole 115, 471–482 (1958).Google Scholar
  264. Hillarp, N.-A.: Enzymic systems involving adenosin phosphates in the adrenaline and nor-adrenaline containing granules of the adrenal medulla. Acta physiol. scand. 42, 144–165 (1958a).PubMedGoogle Scholar
  265. — Adenosinphosphates and inorganic phosphate in the adrenaline and noradrenaline containing granules of the adrenal medulla. Acta physiol. scand. 42, 321–332 (1958b).PubMedGoogle Scholar
  266. — Isolation and some biochemical properties of the catecholamine granules in the cow adrenal medulla. Acta physiol. scand. 43, 82–96 (1958 c).PubMedGoogle Scholar
  267. — Further observations on the state of the catechol amines stored in the adrenal medullary granules. Acta physiol. scand. 47, 271–279 (1959b).PubMedGoogle Scholar
  268. Högberg, B., Nilson, B.: Adenosin-triphosphate in the adrenal medulla of the cow. Nature (Lond.) 176, 1032–1033 (1955).Google Scholar
  269. Hökfelt, B.: Evidence of adrenaline and noradrenaline in separate adrenal medullary cells. Acta physiol. scand. 30, 55–68 (1953).PubMedGoogle Scholar
  270. — — Histochemical demonstration of noradrenaline and adrenaline in the adrenal medulla. J. Histochem. Cytochem. 3, 1–5 (1955).PubMedGoogle Scholar
  271. — — Nilson, B.: The cytology of the adrenal medullary cells with special reference to the storage and secretion of the sympathomimetic amines. Acta. anat. (Basel) 21, 155–167 (1954).Google Scholar
  272. Jönsson, B., Thieme, G.: Adenosinphosphates in the rat adrenal medulla. I. Adrenal medulla in minimal secretory activity. Acta physiol. scand. 47, 310–319 (1959).PubMedGoogle Scholar
  273. Lagerstedt, St., Nilson, B.: The isolation of granular fraction from the suprarenal medulla, containing the sympathomimetic catecholamines. Acta physiol. scand. 29, 251–263 (1953).PubMedGoogle Scholar
  274. Nilson, B.: The structure of the adrenaline and noradrenaline containing granules in the adrenal medullary cells with reference to the storage and release of the sympathomimetic amines. Acta physiol. scand. 31, Suppl. 113, 79–107 (1954).Google Scholar
  275. Thieme, G.: Nucleotides in the catechol amine granules of the adrenal medulla. Acta physiol. scand. 45, 328–338 (1959).PubMedGoogle Scholar
  276. Hirsch, E.F., Jellinek, M., Cooper, T.: Innervation of the systemic heart of the California hagfish. Circulat. Res. 14, 212–217 (1964).PubMedGoogle Scholar
  277. Hogben, L.T., Mirvish, L.: The pigmentary effector system. V. The nervous control of excitement pallor in reptiles. Brit. J. exp. Biol. 5, 295–308 (1928).Google Scholar
  278. Slome, D.: The pigmentary effector system. VIII. The dual receptive mechanism of the amphibian background response. Proc. roy. Soc. B 120, 158–173 (1936).Google Scholar
  279. Hökfelt, B.: Noradrenaline and adrenaline in mammalian tissue. Distribution under normal and pathological conditions with special reference to the endocrine system. Acta physiol. scand. 25, Suppl. 92, 1–134 (1951).Google Scholar
  280. McLean, J.M.: The adrenaline and noradrenaline content of the suprarenal glands of the rabbit under normal conditions and after various forms of stimulation. Acta physiol. scand. 21, 258–270 (1950).PubMedGoogle Scholar
  281. Holmes, W.: The adrenal homologues in the lungfish Protopterus. Proc. roy. Soc. B137, 549–562 (1950).Google Scholar
  282. Holmstedt, B.: A modifications of the thiocholine method for the determination of Cholinesterase. Acta physiol. scand. 40, 322–337 (1957).PubMedGoogle Scholar
  283. Sjöquist, F.: Distribution of acetylcholinesterase in the ganglion cells of various sympathetic ganglia. Acta physiol. scand. 47, 284–296 (1959).PubMedGoogle Scholar
  284. Holtz, P., Balzer, H., Westermann, E.: Die Beeinflussung der Reserpinwirkung auf das Nebennierenmark durch Hemmung der Mono-aminoxydase. Naunyn-Schmiedeberg’s. Arch. exp. Path. Pharmak. 231, 361–372 (1957).Google Scholar
  285. Credner, K., Kroneberg, G.: Über das sympathicomimetische pressorische Prinzip des Harns („Urosympathin”). Arch. exp. Pathol. Pharmakol. 204, 228–243 (1947).Google Scholar
  286. Heise, R., Kroneberg, G.: Über die sympathikomimetische Wirksamkeit von Herzmuskelextrakten. Arch. exp. Pathol. Pharmakol. 212, 551–567 (1951).Google Scholar
  287. Kroneberg, G.: Biologische Adrenalinsynthese. Klin. Wschr. 1948, 605.Google Scholar
  288. Schümann, H.J.: Artspezifische Unterschiede im Arterenolgehalt des Nebennierenmarks. Arch. int. Pharmacodyn. 83, 417–430 (1950).PubMedGoogle Scholar
  289. — — Über die sympatikomimetische Wirksamkeit von Herzmuskelextrakten. Naunyn-Schmiedeberg’s. Arch. exp. Path. Pharmak. 212, 551–567 (1951).Google Scholar
  290. Westermann, E.: Über die Dopadecarboxylase und Histidindecarboxylase des Nerven-gewebes. Arch. exp. Pathol. Pharmakol. 227, 538–546 (1956).Google Scholar
  291. —— Hemmung der Glutaminsäuredecarboxylase des Gehirns durch Brenzkatechinderivate. Arch. exp. Pathol. Pharmakol. 231, 311–332 (1957).Google Scholar
  292. Horowitz, S.B.: The energy requirements of melanin granule aggregation and dispersion in the melanophores of Anolis carolinensis. J. cell. comp. Physiol. 51, 341–357 (1958).Google Scholar
  293. Horrisberger, B., Grandjean, E.: Über die Wirkung von Reserpin und von Isopropyl-Isonicotinsäurehydrazid (Marsilid) auf eine konditionierte Fluchtreaktion der Ratte. Helv. physiol. pharmacol. Acta 16, 146–151 (1958).Google Scholar
  294. Horstmann, E.: Beobachtungen zur Motorik der Lymphgefäße. Pflügers Arch. ges. Physiol. 269, 511–519 (1959).Google Scholar
  295. Houssay, B.A., Rapela, C.E.: Adrenal secretion of adrenaline and noradrenaline. Arch. exp. Pathol. Pharmakol. 219, 156–159 (1953).Google Scholar
  296. Hucovic, S.: Isolated rabbit atria with sympathetic nerve supply. Brit. J. Pharmacol. 14, 372–276 (1959).Google Scholar
  297. Hutcheon, D.E.: Ventricular arrhythmias and automacity following norepinephrine. Proc. Soc. exp. Biol. (N. Y.) 93, 592–594 (1956).Google Scholar
  298. Hykes, O.V.: Mouvements du coeur chez les daphnies sous l’influence de quelques substances endocrines. C.R. Soc. Biol. (Paris) 95, 58–60 (1926).Google Scholar
  299. — L’adrénaline et le coeur des mollusques. C.R. Soc. Biol. (Paris) 103, 360–363 (1930).Google Scholar
  300. Inoue, M., Akimoto, H.: Seasonal variation in the noradrenaline and adrenaline contents of the toads adrenal. Kumamoto med. J. 12, 7–11 (1960).Google Scholar
  301. Jaeger, C.P.: Physiology of the Mollusca. II. Action of serotonin and other amines on the heart of Strophocheilos oblongus. Comp. Biochem. Physiol. 6, 243–245 (1962).PubMedGoogle Scholar
  302. — Physiology of mollusca. IV. Action of serotonin on the penis retractor muscle of Strophocheilos oblongus. Comp. Biochem. Physiol. 8, 131–136 (1963).Google Scholar
  303. Jensen, D.: Eptatretin, a potent cardioactive agent from the branchial heart of the pacific hagfish Eptatretus storetis. Comp. Biochem. Physiol. 10, 129–151 (1963).PubMedGoogle Scholar
  304. Johansen, K., Huston, M. J.: Effects of some drugs on the circulatory system of the intact, non-anesthetized cephalopod, Octopus dofleini Comp. Biochem. Physiol. 5, 177–184 (1962).Google Scholar
  305. Johnels, A.G., Palmgren, A.: “Chromaffin” cells in the heart of Myxine glutinosa Acta Zool. (Stockh.) 41, 313–314 (1960).Google Scholar
  306. Jones, J.C: Effects of drugs on Anopheles heart rates. J. exp. Zool. 133, 573–588 (1956).Google Scholar
  307. Jullien, A., Cardot, J., Ripplinger, J., Joly, M.: Revue générale sur la régulation cardiaque chez les invertébrés. Hypothèses recentes. Ann. Sci. Univ. Besançon (2) Zoll. Physiol. fasc. 12, 67–82 (1959).Google Scholar
  308. Jversen, L. L.: The uptake of adrenaline by the isolated perfused rat heart. Brit. J. Pharmacol. 21, 59–75 (1963).Google Scholar
  309. Kanungo, M. S.: Cardiac physiology of the scorpion Palamnaeus bengalensis C. Koch. Biol. Bull. 113, 135–140 (1957).Google Scholar
  310. Karmin, L. R.: Serpasil in canine practice, a preliminary report. N. Amer. Vet. 36, 346–348 (1955).Google Scholar
  311. Kastle, J.H., McDermott, F. A.: Some observations on the production of light by the firefly. Amer. J. Physiol. 27, 122–151 (1910).Google Scholar
  312. Kato, G., Ito, S., Omi, I.: Fibre analysis of cardiac vagus nerve. Jap. J. Physiol. 8, 67–75 (1958).Google Scholar
  313. Kato, G., Ito, Sh., Sakakibara, R.: Fibre analysis of the cardiac sympathetic nerve. Jap. J. Physiol. 8, 76–82 (1958).Google Scholar
  314. Kerkut, G.A., Horn, N., Walker, R.: Long-lasting synaptic inhibition and its transmitter in the snail Helix aspersa. Comp. Biochem. Physiol. 30, 1061–1074 (1969).PubMedGoogle Scholar
  315. Kerkut, G.A., Sedden, C.B., Walker, R.J.: The effect of DOPA, α-methyl DOPA and reserpine on the dopamine content of the brain of the snail, Helix aspersa. Comp. Biochem. Physiol. 18, 921–930 (1966).PubMedGoogle Scholar
  316. Kerkut, G.A., Uptake of DOPA and 5-hydroxytryptophan by monamine-forming neurones in the brain of Helix aspersa. Comp. Biochem. Physiol. 23, 159–162 (1967).PubMedGoogle Scholar
  317. Kerkut, G.A., Walker, R.J.: The effects of drugs on the neurones of the snail Helix aspersa. Comp. Biochem. Physiol. 3, 143–160 (1961).PubMedGoogle Scholar
  318. Ketterer, B., Remilton, Elisabeth: Studies on the pituitary melanophoreexpanding hor=mone with reference to its identity with ACTH. I. The critical assay of the melanophore expanding hormone. J. Endocr. 11, 7–13 (1954).PubMedGoogle Scholar
  319. Keys, A., Bateman, J.B.: Branchial responses to adrenaline and to pitressin in the eel. Biol. Bull. 63, 327–336 (1932).Google Scholar
  320. Kirby, S., Burnstock, G.: Pharmacological studies of the cardiovascular system in the anestetized sleepy lizard (Tiliqua rugosa) and toad (Bufo marinus). Comp. Biochem. Physiol. 28, 321–331 (1969).PubMedGoogle Scholar
  321. Kirchner, E.: Untersuchungen über neurohormonale Faktoren bei Melolontha vulgaris. Zool. Jb. Abt. allg. Zool. 69, 43–62 (1960/1962).Google Scholar
  322. Kiss, G., Michl, H.: Über das Giftsekret der Gelbbauchunke, Bombina variegata. Toxicon 1, 33–39 (1962/63).Google Scholar
  323. Kleinholz, L.H.: The melanophor-dispersing principle in the hypophysis of Fundulus hete-roclitus. Biol. Bull. Woods Hole 69, 379–390 (1935).Google Scholar
  324. Kleinholz, L.H., Havel, V.J., Reichart, R.: Studies on the regulation of bloodsugar concentration in crustaceans. II. Experimental hyperglycemia and the regulatory mechanisms. Biol. Bull. 99, 454–468 (1950).PubMedGoogle Scholar
  325. Kleinschmidt, A., Schümann, H.J.: Strukturuntersuchungen über die Adrenalin und Noradrenalin speichernden Granula des Nebennierenmarks. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 241, 260–272 (1961).Google Scholar
  326. Klingman, Gerda I., Kardaman, Susan, Haber, Judith: Amine levels, monamine oxydase and dopa-decarboxylase activities in the gastro-intestinal tract of the rat. Life Sciences 3, 1355–1360 (1964).PubMedGoogle Scholar
  327. Klippel, R., König, J.: Zur mikroskopischen Methode des Chromatophoren-Tests. Arznei-mittel-Forsch. 6, 489–495 (1956).Google Scholar
  328. Koelle, G. B.: Cholinesterases and anticholinesterase agents. Handbuch exp. Pharmakologie, Bd. 15. Berlin-Göttingen-Heidelberg: Springer 1963.Google Scholar
  329. Köhler, V.: Die Erythrophoren expandierende Wirkung unphysiologischer Konzentrationen von Adrenalin bei der Elritze. Endokrinologie 30, 42–45 (1953).PubMedGoogle Scholar
  330. Koller, G.: Versuche an nervenfreien embryonalen Amphibienherzen. Z. vergl. Physiol. 18, 186–203 (1932/1933).Google Scholar
  331. Kopin, I.J., Gordon, E.K.: Origin of norepinephrine in the heart. Nature (Lond.) 1289 (1963).Google Scholar
  332. Krauter, D.: Experimentelle Untersuchungen über das Interrenalorgan von Knochenfischen. Wilhelm Roux’ Arch. Entwickl.-Mech. Org. 150, 607–637 (1958).Google Scholar
  333. Krijgsman, B.J.: Contractile and pacemaker mechanisms of the heart of arthropods. Biol. Rev. 27, 320–346 (1952).Google Scholar
  334. Kroneberg, G., Schümann, H.J.: Die Wirkung des Reserpins auf den Hormongehalt des Nebennierenmarks. Arch. exp. Pathol. Pharmakol. 231, 349–360 (1957).Google Scholar
  335. Kroneberg, G., Adrenalinsekretion und Adrenalinverarmung der Kaninchennebennieren nach Reser-pin. Arch. exp. Pathol. Pharmakol. 234, 133–146 (1958).Google Scholar
  336. Krupp, H., Lendle, L., Stapenhorst, K.: Pharmakologische Wirkungen am isolierten Ganglien-Muskelpräparat des Gelbrandkäfers. (Zur vergleichenden Pharmakologie des Nerv-Muskelsystems). Arch. exp. Pathol. Pharmakol. 215, 443–459 (1952).Google Scholar
  337. Kruta, U.: Action des poisons du système nerveux autonome sur le coeur isolé de la seiche. J. Physiol. (Paris) 34, 65–76 (1936).Google Scholar
  338. Kuleman, Helga: Untersuchungen der Pigmentbewegungen in embryolanlen Melanophoren von Xenopus laevis in Gewebekulturen. Zool. Jb. Physiol. 69, 169–192 (1962).Google Scholar
  339. Kuntzman, R., Shore, P.A., Bogdanski, D., Brodie, B.B.: Microanalytical procedures for fluorometric assay of brain dopa-5 HTP decarboxylase, norepinephrine and serotonin, and a detailed mapping of decarboxylase activity in brain. J. Neurochem. 6, 226–232 (1960).Google Scholar
  340. Kuschinsky, G.: Chemotaktische Wirkungen von Pharmaka des vegetativen Systems auf Paramäcien. Arch. exp. Pathol. Pharmakol. 208, 182–183 (1949).Google Scholar
  341. Kuschinsky, G., Lindmar, R., Lütllmann, H., Muscholl, E.: Der Einfluß von Reserpin auf die Wirkung der „Neuro-Sympathomimetica”. Arch. exp. Pathol. Pharmakol. 240, 242–252 (1960).Google Scholar
  342. Labos, E., Salánki, J., Rözsa, Katalin: Effect of serotonin and other bioactive agents on the rhythmic activity in the glochidia of a fresh-water (Anodonta cygnea L.). Comp. Biochem. Physiol. 11, 171–172 (1964).Google Scholar
  343. Langemann, H., Ackermann, H.: Über die Aktivität der Aminosäuren-Decarboxylasen im Gehirn des Menschen. Helv. physiol. pharmacol. Acta 19, 399–406 (1961).PubMedGoogle Scholar
  344. Lasagna, L.: Detection of norepinephrine in the parotid gland secretion of Bufo agua. Proc. Soc. exp. Biol. (N. Y.) 78, 876–878 (1951).Google Scholar
  345. Leaders, F.E., Dayrit, C.: The cholinergic component in the sympathetic innervation to the spleen. J. Pharmacol. exp. Ther. 147, 145–152 (1965).PubMedGoogle Scholar
  346. Leduc, J.: Catecholamine production and release in exposure and acclimation to cold. Acta physiol. scand. 53, Suppl. 183, 1–101 (1961).Google Scholar
  347. Lee, H.M., Chen, K.K.: The occurrence of norepinephrine in the Chinese toad venom. J. Pharmacol. exp. Ther. 102, 286–290 (1951).PubMedGoogle Scholar
  348. Lee, T.H., Lerner, A.B., Buettner-Janusch, Vina: Species differences and structural requirements for melanocyte-stimulating activity of melanocyte-stimulating hormones. Ann. N. Y. Acad. Sci. 100, 658–668 (1963)PubMedGoogle Scholar
  349. Lee, W.C., McCarty, L.P., Zodrow, W.W., Shideman, F.E.: The cardiostimulant action of certain ganglionic stimulants on the embryonic chick heart. J. Pharmacol. exp. Ther. 130, 30–36 (1960).PubMedGoogle Scholar
  350. Lee, W.C., Shideman, F.E.: Role of myocardial catecholamines in cardiac contractibility. Science 129, 967–968 (1959).PubMedGoogle Scholar
  351. Lee, W.C., Shin, Y.H., Shideman, F.E.: Cardiac activities of several monamine oxydase inhibitors. J. Pharmacol. exp. Ther. 133, 180–185 (1961).PubMedGoogle Scholar
  352. Lentz, T.L., Wood, J. G.: Amines in the nervous system of coelenterates. J. Histochem. Cyto-chem. 12, 37 (1964).Google Scholar
  353. Lerner, A.B.: Hormonal control of pigmentations. Ann. Rev. Med. 11, 187–194 (1960).PubMedGoogle Scholar
  354. Lerner, A.B., Case, J.D.: Pigment cell regulatory factors. J. invest. Derm. 32, 211–221 (1959).PubMedGoogle Scholar
  355. Lerner, A.B., Shizume, K., Bunding, I.: The mechanism of endocrine control of melanin pigmentation. J. clin. Endocr. 14, 1463–1490 (1954).PubMedGoogle Scholar
  356. L’Hélias, C.: Identification de facteurs hormonaux dans le cerveau et le complexe rétrocéré-bral du phasme Carausius morosus. Ann. Sci. nat. Zool. Biol. Animale 18, 275–281 (1956).Google Scholar
  357. Lichtensteiger, W., Langemann, H.: Aufnahme exogener Catecholamine in monamin-haltige Neurone. Helv. physiol. pharmacol. Acta 23, C31–C33 (1965).Google Scholar
  358. Loewi, O.: Quantitative und qualitative Untersuchungen über den Sympathicusstoff. Pflügers Arch. ges. Physiol. 237, 504–514 (1936).Google Scholar
  359. Loewi, O.: Über den Adrenalingehalt des Säugerherzens. Arch. int. Pharmacodyn. 57, 139–140 (1937).Google Scholar
  360. Lovenberg, W., Weissbach, H., Udenfriend, S.: The effect of thyroxine on isolated dehy-drogenases. Aromatic L-amino acid decarboxylase. J. biol. Chem. 237, 89–93 (1962).PubMedGoogle Scholar
  361. Lowe, T.E., Nayler, W.G.: Cardioactive plasma substances. Amer. J. Heart 69, 1–3 (1965).Google Scholar
  362. Lutz, B. R.: The effect of adrenaline on the auricle of elasmobranch fishes. Amer. J. Physiol. 94, 135–139 (1930).Google Scholar
  363. Lutz, B. R.: The innervation of the stomach and rectum and the action of adrenaline in elasmobranch fishes. Biol. Bull. 61, 93–100 (1931).Google Scholar
  364. Lutz, B. R.: The effect of adrenaline chloride and toad venom on the blood pressure and heart rate of the tropical toad, Bufo marinus. Biol. Bull. 64, 299–303 (1933).Google Scholar
  365. Lutz, B. R., Wyman, L. C.: Reflex cardiac inhibition of branchio-vascular origin in the elasmobranch, Squalus acanthias. Biol. Bull. 62, 10–16 (1932a).Google Scholar
  366. Lutz, B. R.: The evolution of a carotid sinus reflex and the origin of vagal tone. Science 75, 590–591 (1932b).PubMedGoogle Scholar
  367. Macdonald, A.D.: Action of adrenaline on the perfused fish heart. Quart. J. exp. Physiol. 15, 69–80 (1925).Google Scholar
  368. Malhotra, C.L., Pundlik, P.G.: The effect of reserpine on the acetylcholine content of different areas of the central nervous system of the dog. Brit. J. Pharmacol. 14, 46–47 (1959).PubMedGoogle Scholar
  369. Mansour, T.E.: Actions of seretonin and epinephrine on intact and broken cell preparations from the liver fluke, Fasciola hepatica. Pharmacol. Rev. 11, 465–466 (1959).PubMedGoogle Scholar
  370. McCarty, L.P., Lee, W.C., Shideman, F.E.: Measurement of the inotropic effects of drugs on the innervated and non-innervated embryonic chick heart. J. Pharmacol. exp. Ther. 129, 315–321 (1960).Google Scholar
  371. McDovall, R.J.S.: The potentiating action of acetylcholine on that of adrenaline. J. Physiol.(Lond.) 106, 1–7 (1947).Google Scholar
  372. McElroy, W.D., Hastings, J.W.: Biochemistry of firefly luminiscence. In: The luminiscence of biological systems, pp. 161–198. Ed. by F.H. Johnson. Amer. Ass. Adv. Sci. Washington 1955.Google Scholar
  373. McGeer, E.G., McGeer, P.L., McLennan, H.: The inhibitory action of 3-hydroxytyramine, γ-aminobutyric acid (GABA) and of some other compounds towards the crayfish stretch receptor neuron. J. Neurochem. 8, 36–49 (1961).Google Scholar
  374. McLean, J.R., Burnstock, G.: Histochemical localization of catecholamines in the urinary bladder of the toad (Bufo marinus). J. Histochem. Cytochem. 14, 538–548 (1966).PubMedGoogle Scholar
  375. Bell, C., Burnstock, G.: Histochemical and pharmacological studies of the innervation of the urinary bladder of the frog (Rana temporaria). Comp. Biochem. Physiol. 21, 383–392 (1967).Google Scholar
  376. Burnstock, G.: Innervation of the urinary bladder of the sleepy lizard (Trachysaurus rugosus). I. Fluorescent histochemical localization of catecholamines. Comp. Biochem. Physiol. 20, 667–673 (1967a).Google Scholar
  377. —— Innervation of the lungs of the toad (Bufo marinus). I. Fluorescent histochemistry of catecholamines. Comp. Biochem. Physiol. 22, 767–773 (1967b).PubMedGoogle Scholar
  378. McLennan, H.: The effect of some catecholamines upon a monosynaptic reflex pathway in the spinal cord. J. Physiol. (Lond.) 158, 411–425 (1961).Google Scholar
  379. — On the action of 3-hydroxytyramine and dichloroisopropylnoradrenaline on spinal reflexes. Experientia (Basel) 18, 278–279 (1962).Google Scholar
  380. Hagen, B. A.: On the response of the stretch receptor neurones of crayfish to 3-hydroxytyr-amine and other compounds. Comp. Biochem. Physiol. 8, 219–222 (1963).Google Scholar
  381. Medvedeva, N. B.: Le problème de la réaction spécifique des animaux invertébrés à l’action des increts de vertébrés. III. Hyperclycémie adrénalinique et son mécanisme chez Crustacea. J. Méd. Acad. Sci. URSS Ukraine 4, 677 (1935) (zit. nach Z.M. Bacq, 1947).Google Scholar
  382. Meier, R., Meyer, R.T.: Über den peripheren Angriffspunkt des Priscols am Gefäßsystem. Schweiz. med. Wschr. 71, 1206–1207 (1941).Google Scholar
  383. Michaelson, I.A., Richardson, K.C., Snyder, S.N., Titus, E.O.: The separation of cate-cholamine storage vesicles from rat heart. Life Sci. 3, 371–378 (1964).Google Scholar
  384. Michl, H., Kaiser, E.: Chemie und Biochemie der Amphibiengifte. Toxicon 1, 175–228 (1962/63).Google Scholar
  385. Middleton, S., Middleton, H.H., Toka, J.: Adrenergic mechanism of vagal cardiostimulation. Amer. J. Physiol. 158, 31–37 (1949).PubMedGoogle Scholar
  386. Millott, N.: The visceral nervous system of the earthworm. II. Evidence of chemical trans-mission and the action of sympathomimetic and parasympathomimetic drugs on the tone of the alimentary canal. Proc. roy. Soc. B 362–373 (1943b).Google Scholar
  387. Minz, B., Domino, E.F.: Effects of epinephrine and norepinephrine on electrically induced seizures. J. Pharmacol, exp. Ther. 107, 204–218 (1953).Google Scholar
  388. Mislin, H.: Zum Problem der Selbstregulation des Venenherzens (Chiroptera). Helv. physiol. Pharmacol. Acta 17, C27–C31 (1959).Google Scholar
  389. — Zur Funktionsanalyse der Lymphgefäßmotorik (Cavia porcellus L.). Rev. Suisse Zool. 68, 228–238 (1961a).Google Scholar
  390. — Experimenteller Nachweis der autochthonen Automatie der Lymphgefäße. Experientia (Basel) 17, 29–30 (1961b).Google Scholar
  391. — Zur Funktionsanalyse des Hilfsherzens (Vena portae) der weißen Maus (Mus Musculus f.alba). Rev. Suisse Zool. 71, 317–331 (1963)).Google Scholar
  392. Rathenow, D.: Beeinflussung der Spontanrhythmik der isolierten mesenterialen Lymph-gefäße (Lymphangion) durch diverse Pharmaka (Cavia porcellus L.) Helv. physiol. phar-macol. Acta 19, C87–C90 (1961).Google Scholar
  393. —— Experimentelle Untersuchungen über die Bewegungskoordination der Lymphangione (Cavia porcellus L.) Rev. Suisse Zool. 69, 334–344 (1962).Google Scholar
  394. Montagu, Katherine A.: Seasonal variations of noradrenaline and adrenaline concentrations in rat tissues. Nature (Lond.) 178, 417–418 (1956).Google Scholar
  395. Montanari, R., Costa, R., Beaven, M.A., Brodie, B.B.: Turnover rates of norepinephrine in hearts of intact mice, rats and guinea-pigs using tritiated norepinephrine. Life Sciences 2, 232–240 (1963).Google Scholar
  396. Moody, P.A., Cochran, V.A., Drugg, H.: Serological evidence on lagomorph relationships. Evolution 3, 25–33 (1949).PubMedGoogle Scholar
  397. Mott, J.C.: The cardiovascular system. In: M.E. Brown: The physiology of fishes, Vol. I, pp. 81–108. New York: Academic Press 1957.Google Scholar
  398. Müller, J.C., Schlittler, E., Bein, H.J.: Reserpin, der sedative Wirkstoff aus Rauwolfia serpentina Benth. Experientia (Basel) 8, 338 (1952).Google Scholar
  399. Müller, P.: Über die Verteilung der Glutaminsäuredecarboxylase im menschlichen Gehirn. Diss. Med. Univ. Zürich 1962.Google Scholar
  400. Munro, A.F.: Potentiations and reversal of the adrenaline motor response in the guinea-pig ileum by autonomic drugs. J. Physiol. (Lond.) 118, 171–181 (1952).Google Scholar
  401. — Effect of autonomic drugs on the responses of isolated preparations from the guinea-pig intestine to electrical stimulation. J. Physiol. (Lond.) 120, 41–51 (1953).Google Scholar
  402. Muscholl, E.: Die Verteilung von Noradrenalin und Adrenalin im Herzen der Katze, des Kaninchens und der Ratte. Experientia (Basel) 14, 344 (1958).Google Scholar
  403. — Die Konzentration von Noradrenalin und Adrenalin in den einzelnen Abschnitten des Herzens. Arch. exp. Pathol. Pharmakol. 237, 350–364 (1959).Google Scholar
  404. — Die Hemmung der Noradrenalinaufuahme des Herzens durch Reserpin und die Wirkung von Tyramin. Arch. exp. Pathol. Pharmakol. 240, 234–241 (1960).Google Scholar
  405. — Drugs interfering with the storage and release of adrenergic transmitters. In: G. B. Koelle, W.W. Douglas and A. Carlsson: Pharmacology of cholinergic and adrenergic trans-mission, pp. 291–301. Oxford: Pergamon Press 1965.Google Scholar
  406. Maître, L.: Release by sympathetic stimulation of α-methylnoradrenaline in the heart after administration of α-methyldopa. Experientia (Basel) 19, 658–659 (1963).Google Scholar
  407. Vogt, M.: The action of reserpine on sympathetic ganglia. J. Physiol. (Lond.) 136, 7P (1957a).Google Scholar
  408. —— The concentration of adrenaline in the plasma of rabbits treated with reserpine. Brit. J. Pharmacol. 12, 532–535 (1957b).Google Scholar
  409. —— The action of reserpine on the peripheral sympathetic system. J. Physiol. (Lond.) 141, 132–155 (1958).Google Scholar
  410. Müssbichler, A., Umrath, K.: Über den Farbwechsel von Hyla arborea. Z. vergl. Physiol. 32, 311–318 (1950).Google Scholar
  411. Myhrberg, H.E.: Monaminergic mechanisms in the nervous system of Lumbricus terrestris. Google Scholar
  412. Nador, K.: Ganglienblocker. Fortschr. Arzneimittelforsch. 2, 297–416 (1960).Google Scholar
  413. Nayler, W.G., McCulloch, W.M.: The action of anions on cardiac muscle. Aust. J. exp. Biol. med. Sci. 38, 117–126 (1960a).PubMedGoogle Scholar
  414. —— The positive inotropic action of plasma. Aust. J. exp. Biol. med. Sci. 3, 127–134 (1960b).Google Scholar
  415. Price, J.M., Lowe, T.E.: The presence of a substance with positive inotropic activity in blood plasma of a variety of animals. Comp. Biochem. Physiol. 15, 503–507 (1965).PubMedGoogle Scholar
  416. Newman, M., Thienes, C. H.: On the sympathetic innervation of guinea-pig intestine. Amer. J. Physiol. 104, 113–116 (1933).Google Scholar
  417. Nicholls, J.V.V.: The effect of temperature variations and of certain drugs upon the gastric motility of elasmobranch fishes. Contrib. Can. Biol, and Fisheries (N. Y.) 7, 433–442 (1933).Google Scholar
  418. — Reaction of the smooth muscle of the gastrointestinal tract of the skate to stimulation of utonomic nerves in isolated nerve-muscle preparations. J. Physiol. (Lond.) 83, 56–67 (1934).Google Scholar
  419. Nickerson, M.: Pharmacology of adrenergic blockade. Pharmacol. Rev. 1, 27–101 (1949).Google Scholar
  420. — Drugs inhibiting adrenergic nerves and structures innervated by them. In: Goodman and Gilman: The pharmacological basis of therapeutics. 3 Ed., pp. 546–577. New York, Comp. 1965.Google Scholar
  421. — New developments in adrenergic blocking drugs. Ann. N.Y. Acad. Sci. 139, 571–579 (1967).PubMedGoogle Scholar
  422. Nilsson, S., Fänge, R.: Adrenergic receptors in the swimmbladder and gut of a teleost (Anguilla anguilla). Comp. Biochem. Physiol. 23, 661–664 (1967).PubMedGoogle Scholar
  423. —— Adrenergic and cholinergic vagal effects on the stomach of a teleost (Gadus morhua). Comp. Biochem. Physiol. 30, 691–694 (1969).PubMedGoogle Scholar
  424. Norberg, K.-A., Hamberger, B.: The sympathetic adrenergic neuron. Some characteristics revealed by histochemical studies on the intra-neuronal distribution of the transmitter. Acta physiol. scand. 63, Suppl. 238 (1964).Google Scholar
  425. O’Connor, R.J.: Effect of d-tubocurarin chloride and carbaminoylcholine on the respiration of Daphnia. Nature (Lond.) 166, 441 (1950).Google Scholar
  426. Oestlund, E.: Adrenaline, noradrenaline and hydroxytyramine in extracts from insects. Nature (Lond.) 172, 1042–1043 (1953).Google Scholar
  427. — The distribution of catechol amines in lower animals and their effect on the heart. Acta physiol. scand. 31, Suppl. 112, 1–67 (1954).Google Scholar
  428. Oestlund, E. Fänge, R.: Vasodilation by adrenaline and noradrenaline, and the effect of some other substances on perfused fish gills. Comp. Biochem. Physiol. 5, 307–309 (1962).Google Scholar
  429. Oestlund, E. Bloom, B., Adams-Ray, J., Ritzén, M., Siegmane, A., Nordenstam, H., Lishajko, F., von Eitler, U. S.: Storage and release of catecholamines, and the occurence of a specific submicroscopic grannulation in hearts of cyclostomes. Nature (Lond.) 188, 324–325 (1960).Google Scholar
  430. Oka, M., Ohuchi, T., Yoshida, H., Imaizumi, R.: Selective release of noradrenaline and adrenaline from isolated medullary granules. Life Sci. 5, 433–438 (1966).PubMedGoogle Scholar
  431. Oordt, G.J. van, Burgers, A.C.J.: Studies on pigment migrations in the melanophores of Xenopus laevis. Arch. néerl. Zool. Suppl. 1, 13, 290–300 (1959).Google Scholar
  432. Otorii, T.: Pharmacology of the heart of Entosphenus japonicus. Acta med. biol. Jap. 1, 51–59 (1953).Google Scholar
  433. Otsuka, M.: Die Wirkung von Adrenalin auf Purkinjefasern von Säugetierherzen. Pflügers Arch. ges. Physiol. 266, 512–517 (1958).Google Scholar
  434. Paasonen, M.K., Vartiainen, A.: Pharmacological studies on the body wall musculature of cat tape-worm (Taenia taeniaeformis). Acta pharmacol. (Kbh.) 15, 29–36 (1958).Google Scholar
  435. Pantin, C.F.A.: Responses of the leech to acetylcholine. Nature (Lond.) 135, 875 (1935).Google Scholar
  436. Parker, G.H.: The colour changes in lizards, particulary in Phrynosoma. J. exp. Biol. 15, 48–73 (1938).Google Scholar
  437. Parker, G.H.: Sensitization of melanophores by nerve cutting. Proc. nat. Acad. Sci. (Wash.) 28, 164–170 (1942).Google Scholar
  438. Parker, G.H.: Animal colour changes and their neurohumours. A survey of investigations 1910–1943. Cambridge: Cambridge University Press 1948.Google Scholar
  439. Parker, G.H.: What parts of the melanophores system on Fundulus are acted upon by adrenaline? J. cell. comp. Physiol. 5, 310–318 (1934).Google Scholar
  440. Parker, G.H. Zicher, L.M.: Noradrenaline and dopamine content of normal decentralized and denerv-ated pineal gland of the rat. Life Sciences 5, 149–154 (1966).Google Scholar
  441. Paton, D. M.: Uptake of noradrenaline by ventricular slices of Rana pipiens. Comp. Biochem. Physiol. 28, 477–481 (1969).PubMedGoogle Scholar
  442. Pellegrino de Iraldi, A., Zieher, L.M.: Noradrenaline and dopamine content of normal decentralized and denervates pineal gland of the rat. Life Sci. 5, 149–154 (1966).PubMedGoogle Scholar
  443. Pellegrino de Iraldi, A., Zieher, L.M., Gorgina Rodriguez de Lores Arnaiz, Zieher, L.M.: Synaptic vesicles from the rat hypothalamus. Life Sci. 4, 194–201 (1965).Google Scholar
  444. Perry, W.L.M.: Transmission in autonomic ganglia. Brit. med. Bull. 13, 220–226 (1957).PubMedGoogle Scholar
  445. Phillis, J.W.: Innervation and control of a molluscan heart. Comp. Biochem. Physiol. 17, 719–739 (1966a).PubMedGoogle Scholar
  446. Phillis, J.W.: Regulation of rectal movements in Tapes walilingi. Comp. Biochem. Physiol. 17, 909–928 (1966b).PubMedGoogle Scholar
  447. Piccinelli, D.: Azione delia reserpina su alcune localizazioni di indolalchilamine e fenilal- chilamine in vertebrati. Arch. int. Pharmacodyn. 117, 452–458 (1958).PubMedGoogle Scholar
  448. Pletscher, A.K., Gey, F., Kunz, E.: Accumulation of exogenous monamines in brain in vivo and its alteration by drugs. In: H.E. Himwich and W.H. Himwich (Editors): Progress in brain research, Vol. 8, pp. 45–52. Amsterdam: Elsevier Publ. Co. 1964.Google Scholar
  449. Porter, R.W.: Alterations in electrical activity of the hypothalamus induced by stress stimuli. Amer. J. Physiol. 169, 629–637 (1952).PubMedGoogle Scholar
  450. Prosser, C.L.: Comparative animal physiology. Philadelphia: W.B. Saunders Co. 1952.Google Scholar
  451. Prosser, C.L., Brown, F.A., jr.: Comparative animal physiology. 2nd Ed. Philadelphia: W.B. Saunders Co. 1961.Google Scholar
  452. Pscheidt, G.R., Himwich, H.E.: Chicken brain amines, with special reference to cerebellar norepinephrine. Life Sciences 2, 524–526 (1963).Google Scholar
  453. Pscheidt, G.R., Himwich, H.E. Morpurgo, Clara, Himwich, H.E.: Studies on norepinephrine and 5-hydroxytryptamine in various species. In: D. Richter: Comparative Neurochemistry, pp. 401–412. Ed. by D. Richter. Oxford: Pergamon Press 1964.Google Scholar
  454. Raab, W., Gigel, W.: Die Katecholamine des Herzens. Arch. exp. Pathol. Pharmakol. 219, 248–262 (1953).Google Scholar
  455. Rabbeno, A.: Correlazioni fra interrenale e cromaffine. Nota I. Azione associata contempo-ranea dell’adrenalina e dell’ endocorticalina sul cuore isolato di rana. Arch. int. Pharmacodyn. 80, 209–235 (1949).PubMedGoogle Scholar
  456. Rabbeno, A.: The combined action of epinephrine with the hormones of adrenal cortex on the isolated heart of Scyllium canicula. XVIII. Intern. physiolog. Congr. Copenhagen 1950, Abstr. of Communications, pp. 401Google Scholar
  457. Rand, M.J., Chang, V.: New evidence for a cholinergic process in sympathetic transmission. Nature (Lond.) 188, 858–859 (1960).Google Scholar
  458. Randall, D.J., Don Stevens, E.: The role of adrenergic receptors in cardiovascular changes associated with exercise in salmon. Comp. Biochem. Physiol. 21, 415–424 (1967).Google Scholar
  459. Rapela, C.E.: Sensibilidad del recto del sapo y de la rata para la adrenalina y noradrenalina. Rev. Soc. argent. Biol. 27, 260–262 (1951).PubMedGoogle Scholar
  460. Redfield, A.C.: The physiology of the melanophores of the horned toad Phrynosoma. J. exp. Zool. 26, 275–323 (1918).Google Scholar
  461. Riley, V., Fortner, J.G. (Editors): The pigment cell. Molecular, biological and clinical aspects. Ann. N.Y. Acad. Sci. 100, 497–1124 (1963).Google Scholar
  462. Robertis, E. de: Submicroscopic morphology and function of the synapse. Exp. Cell. Res. 5, Suppl. 347–369 (1958).Google Scholar
  463. Robertis, E. de Pellegrino de Iraldi, A.: A plurivascular component in adrenergic nerve endings. Anat. Rec. 139, 299 (1961).Google Scholar
  464. Robertson, O.H.: Factors influencing the state of dispersion of the dermal melanophores in rainbow trout. Physiol. Zool. 24, 309–323 (1951).Google Scholar
  465. Ross, D.M.: Facilitation in sea anemones. I. The action of drugs. J. exp. Biol. 22, 21–31 (1945).PubMedGoogle Scholar
  466. Ross, D.M.: The effects of ions and drugs on neuromuscular preparations of sea anemones. I. On preparations of the column of Calliactis and Metridium. J. exp. Biol. 37, 732–752 (1960a).Google Scholar
  467. Ross, D.M.: The effects of ions and drugs on neuromuscular preparations of Calliactis and Metridium II. J. exp. Biol. 37, 753–774 (1960b).Google Scholar
  468. Rothballer, A.B.: Studies on the adrenaline-sensitive component of the reicular activating system. Electroenceph. clin. Neurophysiol. 8, 603–621 (1956).PubMedGoogle Scholar
  469. Rózsa, S.K.: Comparative physiological data on mediation of the central nervous system in molluscs. Acta physiol. Acta Sci. hung. XXV, 191–197 (1964).Google Scholar
  470. Rózsa, S.K.: Theory of stepwise excitation in gastropods hearts. In: F.V. McCann (Editor): Comparative physiology of the heart current trends, pp. 69–77. Basel: Birkhäuser Verlag 1969.Google Scholar
  471. Rózsa, S.K. Graul, C.: Is serotonin responsible for the stimulative effect of the extracardial nerve in Helix pomatia? Ann. Biol. Tihany 31, 85–96 (1964).Google Scholar
  472. Rózsa, S.K., Graul, C., Zs.-Nagy, I.: Physiological and histochemical evidence for neuroendocrine regulation of heart activity in the snail Limnaea stagnalis L. Comp. Biochem. Physiol. 23, 373–382 (1967).PubMedGoogle Scholar
  473. Rózsa, S.K., Graul, C., Zs.-Nagy, I. Perényi, L.: Chemical identification of the excitatory substance released in Helix heart during stimulation of the extracardial nerve. Comp. Biochem. Physiol. 19, 105–113 (1966).PubMedGoogle Scholar
  474. Rude, Sonia: Catecholamines in the ventral nerve cord of Lumbricus terrestris. Com. Biochem. Physiol. 28, 747–752 (1969).Google Scholar
  475. Rude, Sonia: Monamin containing neurones in the nerve cord and body wall of Lumbricus terrestris. J.comp. Neurol. 128, 397–412 (1966).PubMedGoogle Scholar
  476. Rüegg, J.C.: Untersuchungen am normalen und am chronisch denervierten isolierten Iris-dilatator mit der Methode der Umströmung. Helv. physiol. pharmacol. Acta 13, 309–318 (1955a).PubMedGoogle Scholar
  477. Rüegg, J.C.: Wirkungsverstärkung von Adrenalin und Noradrenalin durch Acetylcholin am isolierten Irisdilatator des Kaninchens. Experientia (Basel) 11, 447 (1955b).Google Scholar
  478. Rüegg, J.C. Hess, W.R.: Die Wirkung von Adrenalin, Noradrenalin und Acetylcholin auf die isolierten Irismuskeln. Helv. physiol. pharmacol. Acta 11, 216–230 (1953).PubMedGoogle Scholar
  479. Rybak, B., Hoffmeister, H., Ruska, H.: Etudes sur la physiologie ultrastructurale de l’oreillette du coeur branchnial de Myxine glutinosa. Life Sciences 4, 109–114 (1962).Google Scholar
  480. Salánki, J.: The effect of serotonin and catecholamines on the nervous control of periodic activity in fresh-water mussel (Anodonta cygnea). Comp. Biochem. Physiol. 8, 163–171 (1963).Google Scholar
  481. Schaepdryver, A.F. de: Pharmacologie de la transmission sympatique périférique. Actualités pharmacologiques 15e Série, pp. 225–256. Paris: Masson & Cie. 1963.Google Scholar
  482. Scharrer, E., Scharrer, B.: Hormones produced by neurosecretory cells. In: H.E. Him-wich and W.H. Himwich (Editors): Recent progress in hormone research, Vol. 10, pp. 183–240. New York: Academic Press 1954.Google Scholar
  483. Scheline, R.R.: Adrenergic mechanisms in fish: chromatophore pigment concentration in the cuckoo wrasse, Labrus ossifagus L. Comp. Biochem. Physiol. 9, 215–227 (1963).Google Scholar
  484. Schümann, H.J.: Über die Speicherung von Adrenalin und Noradrenalin in den chromaffinen Granula des Nebennierenmarks und den Einfluß des Reserpins und Insulins. Arch. exp. Pathol. Pharmakol. 232, 284–285 (1957/1958).Google Scholar
  485. Schümann, H.J.: Über die Freisetzung von Brenzcatechinaminen durch Tyramin. Arch. exp. Pathol.Pharmakol. 238, 41–43 (1960).Google Scholar
  486. Schümann, H.J.: Speicherung und Freisetzung der Brenzkatechinamine. In: H. Nowakowski (Editor): Gewebs- und Neurohormone. Symposium München, 1961. Berlin-Göttingen-Heidelberg: Springer 1962.Google Scholar
  487. Scott, G.T., Clark, R.L., Hickman, J.C.: Mechanism of chromatophor control in the common sand flounder Scophthalamus aquosus. Biol. Bull. 123, 486–511 (1962).Google Scholar
  488. ScRavin, L.N.: Die Veränderung der Tätigkeit der kontraktilen Vacuole von Paramaecium caudatum in Abhängigkeit von den Umweltsbedingungen. Vestn. Leningrad Univ. No. 3, Ser. Biol. H1, 77–95, mit engl. Zusammenfassung (russisch). Ref. Ber. wiss. Biol. 128, 165 (1959).Google Scholar
  489. Sedden, C.B., Walker, R. J., Kerkut, G.A.: The localization of dopamine and 5-hydroxy-tryptamine in neurones of Helix aspersa. Symp. zool. Soc. Lond.: The Molluscs. Ed. by V. Fretter 1967.Google Scholar
  490. Segura, E.T., Biscardi, A.M., Apelbaum, J.: Seasonal variations of brain epinephrine, norepinephrine and 5-Hydroxytryptamine associated with changes in the egg of the toad, Bufo arenarum Hensel. Comp. Biochem. Physiol. 22, 843–850 (1967).PubMedGoogle Scholar
  491. Shepherd, D.M., West, G.B.: Noradrenaline and the suprarenal medulla. Brit. J. Pharmacol. 6, 665–674 (1951).PubMedGoogle Scholar
  492. — — Hydroxytyramine and the adrenal medulla. J. Physiol. (Lond.) 120, 15–19 (1953).Google Scholar
  493. — — Erspamer, V.: Chromaffin bodies of various species of dogfish. Nature (Lond.) 172, 509 (1953).Google Scholar
  494. Shimada, K., Kobayashi, S.: Neural control of pulmonary smooth muscle in the toad. Acta med. biol. (Niigata) 13, 297–303 (1966).Google Scholar
  495. Shore, P.A., Cohn, V.H. jr., Highman, B., Maling, H.M.: Distribution of norepinephrine in the heart. Nature (Lond.) 181, 848–849 (1958).Google Scholar
  496. Silver, M.: The output of adrenaline and noradrenaline from the adrenal medulla of the calf. J. Physiol. (Lond.) 152, 14–29 (1960).Google Scholar
  497. Simpson, G. G.: The principles of classification and a classification of mammals. Bull. Amer. Mus. Nat. Hist. New York 85, 1–350 (1945).Google Scholar
  498. Singer, M.: The sympathetics of the brachial region of the urodele, Triturus. J. comp. Neurol. 76, 119–144 (1942).Google Scholar
  499. Singh, I., Singh, S.I., Malhotra, C.L., Sarma, T.J.: Release of 5-hydroxytryptamine on stimulation of nerves to frog’s stomach muscle and its significance. Arch. int. Pharmacodyn. 134, 131–147 (1961).PubMedGoogle Scholar
  500. Sjöquist, F.: Pharmacological analysis of acetylcholinesterase-rich ganglion cells in the lumbo-sacral sympathetic system of the cat. Acta physiol. scand. (1962).Google Scholar
  501. Skoog, T.: Ganglia in the communicating rami of the cervical sympathetic trunk. Lancet 253, 457–460 (1947).Google Scholar
  502. Smalley, Katherine N.: Adrenergic transmission in the light organ of the firefly Photinus pyralis. Comp. Biochem. Physiol. 16, 467–477 (1965).PubMedGoogle Scholar
  503. Smith, C. L.: Stability of amphibian monaminoxydase and the inhibitory action of semicar-bazide. Comp. Biochem. Physiol. 1, 305–318 (1960).Google Scholar
  504. Smith, D.: The organization and innervation of the luminiscent organ in a firefly Photuris pennsylvanica (Celeoptera), J. cell. Biol. 16, 323–359 (1963).PubMedGoogle Scholar
  505. Snyder, S.H., Glowinski, J., Axelrod, J.: The storage of epinephrine and some of its derivatives in brain synaptosomes. Life Sciences 4, 797–807 (1965).PubMedGoogle Scholar
  506. Sollman, T., Webb, W.: Pharmacological responses of Daphnia magna. J. Pharmacol. exp. Ther. 71, 261–267 (1941).Google Scholar
  507. Steen, J.B., Kruysse, A.: The respiratory function of the teleostean gills. Comp. Biochem. Physiol. 12, 127–142 (1964).PubMedGoogle Scholar
  508. Sterba, G.: Das Adrenal- und Interrenalsystem im Lebenslauf von Petromyzon planeri Bloch. I. Morphologie und Histologie einschließlich Histogenese. Zool. Anz. 155, 151–168 (1955).Google Scholar
  509. Stevens, E. Don Randall, D.J.: Changes in blood pressure, heart rate and breathing rate during moderate swimming activity in rainbow trout. J. exp. Biol. 46, 329 (1967).PubMedGoogle Scholar
  510. Stoppani, A.O.M.: Pharmacology of colour regulation in Amphibia and the importance of endocrine glands. J. Pharmacol. exp. Ther. 76, 118–125 (1942).Google Scholar
  511. — Pieroni, P.P., Murray, A.: Non-identity of intermedin and adrenocorticotrophic hor-mone. Nature (Lond.) 172, 547–548 (1953).Google Scholar
  512. — — — The role of peripheral nervous system in colour changes in Bufo arenarum Hensel. J. exp. Biol. 31, 631–638 (1954).Google Scholar
  513. Strömblad, B.C.R., Nickerson, M.: Accumulation of epinephrine and norepinephrine by some rat tissues. J. Pharmacol. exp. Ther. 134, 154–159 (1961).PubMedGoogle Scholar
  514. Sulman, F.G.: The effect of ACTH on the frog chromatophores. Acta Endocrinol. 10, 320–332 (1952a).PubMedGoogle Scholar
  515. — Chromatophorotropic effect of adrenocorticotropic hormone. Nature (Lond.) 169, 588–589 (1952b).Google Scholar
  516. Suomalainen, P.: The effect of adrenaline on the blood sugar content in Helix pomatia L. Ann. Zool. Soc. Zool.-Botan. Fennicae Vanamo 7, 1–3 (1939).Google Scholar
  517. Suomalainen, P. Uuspää, V.: Adrenaline/Noradrenaline ratio in the adrenal glands of the hedgehob during summer activity and hybernation. Nature (Lond.) 182, 1500–1501 (1958).Google Scholar
  518. Sweeney, C.D.: The synthesis of dopamine from dopa in the ganglia of Mercenaria mercenaria (Mollusca, Pelecypoda). Comp. Biochem. Physiol. 30, 903–907 (1969).PubMedGoogle Scholar
  519. Sweeney, C.D. Dopamine, its occurrence in molluscan ganglia. Science 159, 1051 (1963).Google Scholar
  520. Sweeney, C.D. Histochemical and pharmacological indications that dopamine may be a neurohumor in molluscs. Amer. Zool. 5, Abstract 204 (1965).Google Scholar
  521. Sweeney, C.D. The anatomical distribution of monamines in a fresh-water bivalve mollusc, Sphaerium sulcatum (L.). Comp. Biochem. Physiol. 25, 601–613 (1968).PubMedGoogle Scholar
  522. Tabor, H., Tabor, C.W., Rosenthal, S.M.: The biochemistry of polyamines: spermine and spermidine. Ann. Rev. Biochem. 30, 579–604 (1961).Google Scholar
  523. Tamano, N., Kuriaki, K.: Applicability of the silkworm for pharmacological studies on the drug acting on the nervous system, antimitotics and insecticides. Arch. int. Pharmacodyn. 132, 49–59 (1961).PubMedGoogle Scholar
  524. Tauc, L.: Potentiels postsynaptiques inhibiteurs obtenus dans les cellules nerveuses du ganglion abdominal de l’aplysie. C. R. Acad. Sci. (Paris) 242, 676–678 (1956).Google Scholar
  525. Tauc, L. Gerschenfeld, H.M.: L’acétylcholine comme transmetteur possible de l’inhibition synaptique chez l’Aplysie. C. R. Acad. Sci. (Paris) 251, 3076–3078 (1960).Google Scholar
  526. Ten Cate, J., Coomans, H.E., Walop, J.N.: L’influence de quelques substances pharma-cologiques sue les mouvements des cils vibratiles des tentacules de Metridium senile (L.). Arch. néerl. Zool. 11, 14–21 (1955).Google Scholar
  527. Thoenen, H., Tranzer, J.P., Hürlimann, A., Haefely, W.: Untersuchungen zur Frage eines cholinergischen Gliedes in der postganglionären sympathischen Transmission. Helv. physiol. Pharmacol. Acta 24, 229–246 (1966).PubMedGoogle Scholar
  528. Trautwein, W., Schmidt, R.F.: Zur Membranwirkung des Adrenalins an der Herzmuskel-faser. Pflügers Arch. ges. Physiol. 271, 715–726 (1960).Google Scholar
  529. Triplett, E.L.: The development of the sympathetic ganglia, sheath cells, and meninges in amphibia. J. exp. Zool. 138, 283–308 (1958).Google Scholar
  530. Turchini, J.: Recherches histochimiques sur les corps suprarénaux des sélaciens. Ann. Histochim. 1, 78–80 (1956).Google Scholar
  531. Turner, W. J., Carl, A.: Effect of reserpine on the melanophores of fish. Science 121, 877–878 (1955).PubMedGoogle Scholar
  532. Twarog, B.: The pharmacology of a molluscan smooth muscle. Brit. J. Pharmacol. 14, 404–407 (1959).PubMedGoogle Scholar
  533. Umrath, K.: Über den Einfluß der adrenocorticotropen Hormone auf die Färbung und über die Auslösbarkeit des Hochzeitskleides bei einigen Fischen. Z. vergl. Physiol. 42, 181–191 (1959).Google Scholar
  534. Umrath, K. Walcher, H.: Farbwechselversuche an Macropodus opercularis und ein Vergleich der Geschwindigkeit der Farbänderung bei Macropoden und Elsitzen. Z. vergl. Physiol. 33, 129–141 (1951).Google Scholar
  535. Unger, H.: Untersuchungen zu neurohormonalen Steuerungen der Herztätigkeit bei Schaben (Periplaneta orientalis, Periplaneta americana, Phyllodromia germanica). Biol. Zbl. 76, 204–225 (1957).Google Scholar
  536. Unger, H. Gersch, M., Fischer, F.: Die Isolierung eines Neurohormons aus dem Nervensystem von Periplaneta americana und einige biologische Testverfahren. Wiss. Z. Friedr. Schiller Univ. Jena Abt. Math. Nat. 6 (1957).Google Scholar
  537. Uuspää, V. J.: The catecholamine content of the brain and heart of the hedgehog (Erinaceus europaeus) during hibernation and in active state. Ann. Med. exp. Fenn. 41, 340–348 (1963a).Google Scholar
  538. Uuspää, V. J. The 5-hydroxytryptamine content of the brain and some other organs of the hedgehog (Erinaceus europaeus) during activity and hibernation. Experientia (Basel) 19, 156 (1963b).Google Scholar
  539. Vane, J.R., Wolstenholme, G.E.W., O’Connor, M.: Adrenergic mechanisms. Ciba Foun-dation Symposium. London: J.A. Churchill Ltd. 1960.Google Scholar
  540. Venzke, W.G.: The morphogenesis of the adrenal glands of chicken embryo. Amer. J. vet. Res. 14, 219–229 (1953).PubMedGoogle Scholar
  541. Viehofer, A., Cohen, J.: The comparative physiological action of benzedrine (amphetamine) and derivatives on Daphnia magna. Amer. J. Pharm. 110, 526–532 (1938).Google Scholar
  542. Vogt, Marthe: Norepinephrine and epinephrine in the central nervous system. Pharmacol. Rev. 6, 31–32 (1954a).Google Scholar
  543. Vogt, Marthe The concentration of sympathin in different parts of the central nervous system under normal conditions and after the administration of drugs. J. Physiol. (Lond.) 123, 451–481 (1954b).Google Scholar
  544. Vogt, Marthe: Sympathomimetic amines in the central nervous system. Normal distribution and changes produced by drugs. Brit. med. Bull. 13, 166–171 (1957).PubMedGoogle Scholar
  545. Volle, R.L., Koelle, G.B.: The physiological role of acetylcholinesterase (ACHE) in sympathetic ganglia. J. Pharmacol. exp. Ther. 133, 223–240 (1961).PubMedGoogle Scholar
  546. Walker, R. J., Woodruff, G.N., Glaizner, B., Sedden, C.B., Kerkut, G.A.: The pharmacology of Helix dopamine receptor of specific neurones in the snail, Helix aspersa. Comp. Biochem. Physiol. 24, 455–469 (1968).PubMedGoogle Scholar
  547. Waud, D.R., Krayer, O.: The rate-increasing effect of epinephrine and norepinephrine and its modification by experimental time in the isolated heart of normal and reserpine-pre-treated dogs. J. Pharmacol. exp. Ther. 128, 352–357 (1960).PubMedGoogle Scholar
  548. Wegmann, A., Kako, K.: Particle-bound and free catecholamines in dog hearts and the uptake of injected norepinephrine. Nature (Lond.) 192, 978 (1961).Google Scholar
  549. Weil-Malherbe, H., Bone, A.D.: Blood platlets as carriers of adrenaline and noradrenaline. Nature (Lond.) 174, 557–558 (1954).Google Scholar
  550. Weil-Malherbe, H.: Intracellular distribution of catecholamines in the brain. Nature (Lond.) 180, 1050–1051 (1957).Google Scholar
  551. Weil-Malherbe, H., Posner, H.S., Bowles, G.R.: Changes in the concentration and intracellular distribution of brain catecholamines: the effects of reserpine, β-phenylisopropylhydrazine, pyrogallol and 3,4-dihydroxyphenylalanine, alone and in combination. J. Pharmacol. exp. Ther. 132, 278–286 (1961).PubMedGoogle Scholar
  552. Whitby, L.G., Axelrod, J.: The blood-brain barrier for catecholamines. In: S.S. Kety and J. Elkes: Regional Neurochemistry, pp. 284–292. Oxford: Pergamon Press. 1961a.Google Scholar
  553. Whitby, L.G.:The uptake of circulating (3H) norepinephorine by the pituitary gland and various areas of brain. J. Neurochem. 8, 55–64 (1961b).PubMedGoogle Scholar
  554. Weisel, G. F.: The comparative effects of teleost and beef pituitary on chromatophores of cold-blooded vertebrates. Biol. Bull. Woods Hole 99, 487–496 (1950).Google Scholar
  555. Welsh, J.H.: Chemical mediations in crustaceans. II. The action of acetylcholine and adrenaline on the isolated heart of Palinurus argus. Physiol. Zoll. 12, 231–237 (1939).Google Scholar
  556. Welsh, J.H.: Excitation of the heart of Venus mercenaria. Arch. exp. Pathol. Pharmakol. 219, 23–29Google Scholar
  557. Wense, Th.: Über den Nachweis von Adrenalin in Würmern und Insekten. Pflügers Arch. ges. Physiol. 241, 284–288 (1939).Google Scholar
  558. Werle, E., Aures, D.: Über die Reinigung und Spezifität der Dopa Dekarboxylase. Hoppe-Seylers Z. physiol. Chem. 316, 45–60 (1959).PubMedGoogle Scholar
  559. West, B.: Noradrenaline and the adrenal glands of the domestic fowl. J. Pharm. Pharmacol. 2, 732–733 (1950).Google Scholar
  560. West, G. B.: The nature of avian and amphibian sympathin. J. Pharm. Pharmacol. 3, 400–408 (1951).PubMedGoogle Scholar
  561. West, G. B.: The comparative pharmacology of the suprarenal medulla. Quart. Rev. Biol. 30, 116–137 (1955).PubMedGoogle Scholar
  562. Wigglesworth, V.B.: The principles of insect physiology. London: Methmen & Co. 1953.Google Scholar
  563. Wilber, C. G.: Pharmacological studies on the melanophores in Fundulus heteroclitus. Progr. Fish Culturist 22, 34–37 (1960).Google Scholar
  564. Wimmers, J.: Über die jahreszeitlich bedingten Änderungen der Empfindlichkeit der Frosch-lunge gegenüber Acetylcholin. Pflügers Arch. ges. Physiol. 245, 189–197 (1941).Google Scholar
  565. Witsche, E.: Embryogenesis of the adrenal and the reproductive glands. Recent Progr. Hormone Res. 6, 1–27 (1951).Google Scholar
  566. Witt, P.N.: Verschiedene Wirkung von Pervitin und Coffein auf den Netzbau der Spinne. Helv. physiol. pharmacol. Acta 7, C65–C66 (1949).Google Scholar
  567. Witt, P.N.: Ein biologischer Nachweis von Adrenochrom und seine mögliche Anwendung. Helv. physiol. parmacol. Acta 12, 327–337 (1954).Google Scholar
  568. Witt, P.N., Brettschneider, L., Boris, A.P.: Sensitivity to D-amphetamine in spiders after ipro-niazid and imipramine. J. Pharmacol. exp. Ther. 132, 183–192 (1961).PubMedGoogle Scholar
  569. Witt, P.N., Heimann, H.: Prüfung der Wirkung einer einmaligen Gabe von Largactil am Menschen mit dem Durchstrecktest von Meili und an der Spinne beim Netzbauverhalten. Helv. physiol. pharmacol. Acta 12, C98–C99 (1954).Google Scholar
  570. Wood, A.E.: What, if anything is a rabbit? Evolution 11, 417–425 (1957).Google Scholar
  571. Wood, M. J., Burnstock, G.: Innervation of the lungs of the toad (Bufo marinus). I.-Physiology and pharmacology. Comp. Biochem. Physiol. 22, 755–766 (1967).PubMedGoogle Scholar
  572. Woolley, P.: Colour change in a Chelonian. Nature (Lond.) 179, 1255–1256 (1957).Google Scholar
  573. Wrete, M.: Die intermediären vegetativen Ganglien der Lumbairegion beim Menschen. Z.mikr.-anat. Forsch. 53, 122–141 (1943).Google Scholar
  574. Wrete, M.: Ganglia of rami communicates in man and mammals particularly monkey. Acta anat. (Basel) 13, 329–336 (1951).Google Scholar
  575. Wright, A., Chester-Jones, I.: Chromaffine tissue in the lizard adrenal gland. Nature (Lond.) 175, 1001–1002 (1955).Google Scholar
  576. Wright, A., Phillips, J.G.: The histology of the adrenal gland of the Prototheria. J. Endocr. 15, 100–107 (1957).PubMedGoogle Scholar
  577. Wright, R.M., Lerner, A.B.: On the movement of pigment granules in frog melanocytes. Endocrinology 66, 599–609 (1960).PubMedGoogle Scholar
  578. Wunder, W.: Experimentelle Erzeugung des Hochzeitskleides beim Bitterling (Rhodeus amarus) durch Einspritzung von Hormonen. Z. vergl. Physiol. 13, 696–708 (1931).Google Scholar
  579. Wyman, L., Lutz, B.R.: The action of adrenaline and certain drugs on the isolated holothurian cloaca. J. exp. Zool. 57, 441–453 (1930).Google Scholar
  580. Zeller, E.A.: Monaminoxydase. In: J. de Ajuriaguerra (Editeur): Monamines et système nerveux central, pp. 31–37. Paris: Masson & Cie. 1962.Google Scholar
  581. Zeller, E.A., Birkhäuser, H., Mislin, H., Wenk, M.: Über das Vorkommen der Diaminoxydase bei Mensch, Säugetier und Vogel. Mit einem Anhang über das Vorkommen der Cholinesterase beim Vogel. 5. Mitteilung über den enzymatischen Abbau von Polyaminen. Helv. chim. Acta 22, 1381–1395 (1939).Google Scholar
  582. Zimmermann, S.B., Dalton, H.C.: Physiological responses of amphibian melanophores. Physiol. Zool. 34, 21–33 (1961).Google Scholar
  583. Zingoni, U.: Apparecchio di perfusione per cuore embrionale di polio. Arch. Fisiol. 56, 221–225 (1956a).PubMedGoogle Scholar
  584. Zingoni, U.: L’effetto dell’acetilcolina e dell’adrenalina sull’inotropismo, sul cronotropismo e sul tono del cuore di embrioni di polio privo di elementi nervosi. Arch. Fisiol. 56, 226–236 (1956b).PubMedGoogle Scholar

Copyright information

© Springer-Verlag / Berlin · Heidelberg 1971

Authors and Affiliations

  • Hans Fischer
    • 1
  1. 1.ZollikonSchweiz

Personalised recommendations