Skip to main content

Mathematical Foundations

  • Chapter
  • 108 Accesses

Abstract

A system {f(j,x)} of real and almost everywhere nonvanishing function f(0,x),f(1,x), … is called orthogonal in the interval x 0xx 1 if the following condition holds true:

$$\int\limits_{\mathop x\nolimits_0 }^{\mathop x\nolimits_1 } {f(j,x)f(k,x)dx = \mathop X\nolimits_j \mathop \delta \nolimits_{jk} } $$
((1))

δ jk = 1 for j = k, δ jk = 0 for jk

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

1.11

  1. Tricomi, F.:Vorlesungen über Orthogonalreihen. 2nd ed. Berlin/Heidelberg/ New York: Springer, 1970.

    MATH  Google Scholar 

  2. Sansone, G.:Orthogonal functions. New York: Interscience, 1959.

    MATH  Google Scholar 

  3. Lense, J.:Reihenentwicklungen in der mathematischen Physik. Berlin: de Gruyter, 1953.

    MATH  Google Scholar 

  4. Milne-Thomson, J.M.:The calculus of finite differences. London: Macmillan, 1951.

    Google Scholar 

  5. Nörlund, N.E.:Vorlesungen über Differenzenrechnung. Berlin: Springer, 1924.

    MATH  Google Scholar 

  6. Gradshtein, I.S., Ryzhik, I.M.:Tables of integrals, series and products. New York: Academic Press, 1966.

    Google Scholar 

1.1.2

  1. Courant, R., Hilbert, D.:Methoden der mathematischen Physik. Berlin: Springer, 1931.

    Google Scholar 

  2. Morse, P.M., Feshbach, H.:Methods of theoretical physics. New York: McGraw-Hill, 1953.

    MATH  Google Scholar 

  3. Whittaker, E.T., Watson, G.N.:A course of modern analysis. London: Cambridge University Press, 1952, Chapter 9.

    Google Scholar 

  4. Titchmarsh, E.C.:Theory of the Fourier-integral. London: Oxford University Press, 1937.

    Google Scholar 

  5. Alexits, G.:Konvergenzprobleme der Orthogonalreihen. Berlin: Deutscher Verlag der Wissenschaften, 1960.

    MATH  Google Scholar 

  6. Davis, H.F.:Fourier series and orthogonal functions. Boston: Allyn & Bacon, 1963.

    Google Scholar 

1.1.3

  1. Smirnow, W.I.:Lehrgang der höheren Mathematik. Teil 2, Berlin: Deutscher Verlag der Wissenschaften, 1961.

    Google Scholar 

  2. Titchmarsh, E.C.:Theory of the Fourier-integral. London: Oxford University Press, 1937.

    Google Scholar 

  3. Bracewell, R.:The Fourier-transform and its applications. New York: McGraw-Hill, 1965.

    MATH  Google Scholar 

  4. Bennet, W.R., Davey, J.R.:Data transmission. New York: McGraw-Hill, 1959.

    Google Scholar 

  5. Wiener, N.:The Fourier-integral and certain of its applications. London: Cambridge University Press, 1933.

    Google Scholar 

  6. Hartley, R.V.L.: A more symmetrical Fourier analysis.Proc. IRE 30 (1942) 144–150.

    Article  MathSciNet  Google Scholar 

  7. Boesswetter, C.: Analog sequency analysis and synthesis of voice signals.Proc. 1970 Walsh Functions Symposium, 220–229.

    Google Scholar 

  8. Boesswetter, C.: The mutual spectral representation of trigonometric functions and Walsh functions.Proc. 1971 Walsh Functions Symposium, 43–46.

    Google Scholar 

  9. Filipowsky, R.F.: On the correlation matrices of trigonometric product functions.IBM J. Research and Development 14 (1970) 680–685.

    Article  Google Scholar 

  10. Simmons, R.E.: A short review of Walsh functions and the Walsh-Hadamard transform. Naval Electronics Laboratory Center Technical Note 1850, 6-11-01N/ZR011-01-01/NELC Z155. San Diego, Calif. 92152.

    Google Scholar 

  11. Böβwetter, C.: Die Eigenschaften der Sequenz-Analyse und -Synthese von Signalen.NTZ 24 (1971) 193–201.

    Google Scholar 

1.1.4

  1. Walsh, J.L.: A closed set of orthogonal functions.Amer. J. of Mathematics 45 (1923) 5–24.

    Article  MATH  Google Scholar 

  2. Rademacher, H.: Einige Sätze von allgemeinen Orthogonalfunktionen.Math. Annalen 87 (1922) 122–138.

    Article  MathSciNet  Google Scholar 

  3. Henderson, K.W.: Some notes on the Walsh functions.IEEE Trans. Electronic Computers EC-13 (1964) 50–52.

    Article  MATH  Google Scholar 

  4. Liedl, R.: Über eine spezielle Klasse von stark multiplikativ orthogonalen Funktionensystemen.Monatshefte für Mathematik 68 (1964) 130–137.

    Article  MathSciNet  MATH  Google Scholar 

  5. Liedl, R: Walsh-Funktionen und endlichdimensionale Hilbertraume.Monatshefte für Mathematik 70 (1966) 342 - 348.

    Article  MathSciNet  MATH  Google Scholar 

  6. Liedl, R.: Über gewisse Funktionale im RaumC (ν) [0,1] und Walsh-Fourier-Koef-fizienten.Monatshefte für Mathematik 72 (1968) 38–44.

    Article  MathSciNet  MATH  Google Scholar 

  7. Weiss, P.: Zusammenhang von Walsh-Fourier-Reiben mit Polynomen.Monatshefte für Mathematik 71 (1967) 165–179.

    Article  MATH  Google Scholar 

  8. Pichler, F.: Synthese linearer periodisch zeitvariabler Filter mit vorgeschrie-benem Sequenzverhalten.Arch, elektr. Übertragung 22 (1968) 150–161.

    Google Scholar 

  9. Pichler, F.: Das System der sal- und cal-Funktionen als Erweiterung des Systems der Walsh-Funktionen und die Theorie der sal- und cal-Fouriertransformation. Thesis, Dept. of Mathematics, Innsbruck Univ., Austria 1967.

    Google Scholar 

  10. Vilenkin, N.W.: On a class of complete orthogonal systems (in Russian).Izv. Akad. Nauk SSSR, Ser. Math. 11 (1947) 363–400.

    MathSciNet  MATH  Google Scholar 

  11. Fine, N.J.: On the Walsh-functions.Trans. Amer. Math. Soc. 65 (1949) 372–414.

    Article  MathSciNet  MATH  Google Scholar 

  12. Fine, N.J.: The generalized Walsh functions.Trans. Amer. Math.Soc. 69 (1950) 66–77.

    MathSciNet  MATH  Google Scholar 

  13. Paley, R. E.: A remarkable series of orthogonal functions.Proc. London Math. Soc. (2) 34 (1932) 241–279.

    Article  Google Scholar 

  14. Selfridge, R.G.: Generalized Walsh transforms.Pacific J. of Math. 5 (1955) 451–480.

    MathSciNet  MATH  Google Scholar 

  15. Toni, S.: Su un notevole sistema orthogonale di funzioni.Atti Accad. Sci. 1st. Bologna, CI. Sci. fis., Ann. 246 Rend. XI, Ser. 5, No. 1 (1958) 225–230.

    MathSciNet  Google Scholar 

  16. Morgenthaler, G.W.: On Walsh-Fourier series.Trans. Amer. Math. Soc. 84 (1957) 472–507.

    Article  MathSciNet  MATH  Google Scholar 

  17. Wiener, N.:Nonlinear problems in random theory. New York: MIT Press and Wiley, 1958, p. 21.

    MATH  Google Scholar 

  18. Fowle, F.F.: The transposition of conductors.Trans. AIEE 23 (1905) 659 to 687.

    Google Scholar 

  19. Peterson, W.W.:Error-correcting codes. New York: MIT Press and Wiley, 1961.

    MATH  Google Scholar 

  20. Loomis, L.H.:An introduction to abstract harmonic analysis. New York: Van Nostrand, 1953.

    MATH  Google Scholar 

  21. Hammond, J.L., Johnson, R.S.: A review of orthogonal square wave functions and their application to linear networks.J. Franklin Inst. 273 (1962) 211–225.

    Article  MathSciNet  Google Scholar 

  22. Vilenkin, N.W.: On the theory of Fourier integrals on topologic groups (in Russian).Mat. Sbornik (N.S.) 30 (72) (1952) 233–244.

    MathSciNet  Google Scholar 

  23. Fine, N.J.: The Walsh functions, in Encyclopaedic Dictionary of Physics. Oxford: Pergamon Press (in press).

    Google Scholar 

  24. Polyak, B., Shreider, Yu. A.: The application of Walsh functions in approximate calculations.Voprosy Teorii Matematicheskikh Mashin 2, Bazilevskii (Editor), Moscow: Fizmatgiz 1962.

    Google Scholar 

  25. Boulton, P.I.: Smearing techniques for pattern recognition (Hadamard-Walsh transformation). Thesis, Univ. of Toronto, Canada (1968).

    Google Scholar 

  26. Kokilashvili, V.M.: Approximation of functions by means of Walsh-Fourier-series (in Russian).Soobshcheniya Akademii Nauk Gruzunskoy SSR 55 (1967) 305–310.

    Google Scholar 

  27. Shneyder, A.A.: The uniqueness of expansions in Walsh functions (in Russian).Mat. Sbornik 24 (66) (1949) 279–300.

    MathSciNet  Google Scholar 

  28. Shneyder, A.A.: Series of Walsh functions with monotonic coefficients (in Russian).Izv. Akad. Nauk SSSR, Ser. Mat. 12 (1948) 179–192.

    Google Scholar 

  29. Koenig, M., Zolesio, J.: Problems numeriques relatifs aus fonctions de Walsh.Comp. Ren. Acad. Sc. Paris 271 (23 Nov. 1970 ) 1074–1077.

    Google Scholar 

  30. Franks, L.E.:Signal theory. Englewood Cliffs, N.J.: Prentice Hall 1969, p. 56.

    MATH  Google Scholar 

  31. Maxwell, J.C.:A treatise on electricity and magnetism, reprint of the third edition of 1891. New York: Dover 1954, Vol. 1, p. 470.

    MATH  Google Scholar 

  32. Adams, R.N.: Properties and applications of Walsh functions. Thesis, University of Pennsylvania, Moore School of Electrical Engineering, Philadelphia (1962).

    Google Scholar 

  33. Ohnsorg, F.: Properties of complex Walsh functions.Proc. IEEE Fall Electronics Conf., Chicago, 18—20 Oct. 1971, 383–385.

    Google Scholar 

1.1.5

  1. Crittenden, R.B.: On Hadamard matrices and complete orthonormal systems.IEEE Trans. Computers, submitted.

    Google Scholar 

  2. Paley, R.E.A.: On orthogonal matrices.J. Math. Phys. 12 (1933) 311–320.

    Google Scholar 

  3. Hadamard, M.J.: Resolution d’une question relative aux determinants.Bull. Sci. Math. A 17 (1893) 240–246.

    Google Scholar 

  4. Golomb, S.W., Baumert, L.D.: The search for Hadamard matrices.Amer. Math. Monthly 70 (1) (1963) 12–17.

    Article  MathSciNet  MATH  Google Scholar 

  5. Sylvester, J.J.: Thoughts on inverse orthogonal matrices, simultaneous sign-successions, and tessalated pavements in two or more colors, with applications to Newton’s rule, ornamental tile-work, and the theory of numbers.Phil. Mag. 34 (1867) 461–475.

    Google Scholar 

  6. Welch, L.R.: Walsh functions and Hadamard matrices.Proc. 1970 Walsh Functions Symposium, 163–165.

    Google Scholar 

  7. Henderson, K.W.: Previous investigation of realization of an arbitrary switching function with a network of threshold and parity elements.IEEE Trans. Computers C-20 (1971) 941–942.

    Article  Google Scholar 

1.1.6

  1. Haar, A.: Zur Theorie der orthogonalen Funktionensysteme.Math. Ann. 69 (1910) 331–371; 71 (1912) 38–53.

    Google Scholar 

1.1.7

  1. Meltzer, B., Searle, N.H., Brown, R.: Numerical specification of biological form.Nature 216 (7 Oct. 1967 ) 32–36.

    Article  Google Scholar 

1.2.1

  1. Fourier, J.:Théorie analytique de la chaleur (1822). English edition:The analytical theory of heat (1878), reprinted New York: Dover 1955.

    Google Scholar 

1.2.2

  1. Morse, P.M., Feshbach, H.:Methods of theoretical physics, Vol. 1. New York: McGraw-Hill, 1953, pp. 942–945.

    MATH  Google Scholar 

  2. Bracewell, R.:The Fourier-transform and its applications. New York: McGraw-Hill, 1965.

    MATH  Google Scholar 

  3. Kantorowitsch, L.W., Akilow, G.P.: Funktionalanalysis in normierten Räumen. Berlin: Akademie-Verlag, 1964, Chapter 8, section 1.

    MATH  Google Scholar 

  4. Ahmed, N., Bates, R.M.: A power spectrum and related physical interpretation for the multidimensional BIFORE Transform.Proc. 1971 Walsh Functions Symposium, 47–50.

    Google Scholar 

  5. Ahmed, N., Rao, K.R.: Generalized transform.Proc. 1971 Walsh Functions Symposium, 60–67.

    Google Scholar 

  6. Kak, S.C.: Classification of random binary sequences using Walsh-Fourier analysis.Proc. 1971 Walsh Functions Symposium, 74–77.

    Google Scholar 

1.2.4

  1. Harmuth, H.: Verallgemeinerung des Fourier-Integrales und des Begriffes Frequenz.Arch, elektr. Übertragung 18 (1964) 439–451.

    Google Scholar 

  2. Pichler, F.: Das System der sal- und cal-Funktionen als Erweiterung des Systems der Walsh-Funktionen und die Theorie der sal- und cal-Fourier-transformation. Thesis, Dept. of Mathematics, Innsbruck Univ., Austria 1967.

    Google Scholar 

  3. Bowyer, D.: Walsh functions, Hadamard matrices and data compression.Proc. 1971 Walsh Functions Symposium, 33–37.

    Google Scholar 

  4. Andrews, H.C.: Walsh functions in image processing, feature extraction and pattern recognition.Proc. 1971 Walsh Functions Symposium, 26–32.

    Google Scholar 

  5. Alexandridis, N., Klinger, A.: Walsh orthogonal functions in geometrical feature extraction.Proc. 1971 Walsh Functions Symposium, 18–25.

    Google Scholar 

  6. Moharir, P.S., Sama, K.R., Prasada, B.: Amplitude bounds and quantization schemes in the Walsh-Fourier domain.Proc. 1971 Walsh Functions Symposium, 142–150.

    Google Scholar 

  7. Sandy, G.F.: Some Walsh functions analysis techniques.Proc. 1971 Walsh Functions Symposium, 151–157.

    Google Scholar 

  8. Carl, J.W., Kabrisky, M.: Playing the identification game with Walsh functions.Proc. 1971 Walsh Functions Symposium, 203–209.

    Google Scholar 

  9. Ahmed, N., Rao, K.R.: Transform properties of Walsh functions.Proc. IEEE Fall Electronics Conf., Chicago, 18-20 Oct. 1971, 378–382.

    Google Scholar 

1.2.5

  1. Green, R.R.: A serial orthogonal decoder. Space Programs Summary, Jet Propulsion Laboratory, Pasadena, Calif., No. 37–39, vol. 4 (1966) 247–251.

    Google Scholar 

  2. Posner, E.C.: Combinatorial structures in planetary reconnaissance.Symposium on error-correcting codes. Math. Research Center of the US Army, Univ. of Wisconsin, 1968.

    Google Scholar 

  3. Welch, L.R.: Computation of finite Fourier series. Space Programs Summary, Jet Propulsion Laboratory, Pasadena, Calif., No. 37–39, Vol. 4 (1966) 295–297.

    Google Scholar 

  4. Pratt, W.K., Kane, J., Andrews, H.C.: Hadamard transform image coding.Proc. IEEE 57 (1969) 58–68.

    Article  Google Scholar 

  5. Whelchel, J.E., Guinn, D.F.: Fast Fourier-Hadamard transform and its use in signal representation and classification.EASCON’ 68 Record (1968) 561–573.

    Google Scholar 

  6. Shanks, J.L.: Computation of the fast Walsh-Fourier transform.IEEE Trans. Computers C-18 (1969) 457–459.

    Article  MATH  Google Scholar 

  7. Agarwal, V.K.: A new approach to the fast Hadamard transform algorithm.Proc. 1971 Hawaii Int. Conf. System Sciences, 408–410.

    Google Scholar 

  8. Kabrisky, M., Carl, J.W.: Sequency filtered densely connected transforms for pattern recognition.Proc. 1971 Hawaii Int. Conf. System Sciences, 223–228.

    Google Scholar 

  9. Parkyn, W.A.: Sequency and periodicity concepts in imagery analysis.Proc. 1971 Hawaii Int. Conf. System Sciences, 229–232.

    Google Scholar 

  10. Kennedy, J.D.: Experimental Walsh-transform image processing.Proc. 1971 Hawaii Int. Conf. System Sciences, 233–235.

    Google Scholar 

  11. Schmidt, R.O.: A collection of Walsh function programs.Proc. 1971 Walsh Functions Symposium, 88–94.

    Google Scholar 

  12. Pratt, W.K.: An algorithm for a fast Hadamard matrix transform of order twelve.IEEE Trans. Computers C-18 (1969) 1131–1132.

    Article  MATH  Google Scholar 

  13. Carl, J.W.: Comment on ‘An algorithm for a fast Hadamard matrix transform of order twelve’.IEEE Trans. Computers C-20 (1971) 587–588.

    Article  MATH  Google Scholar 

  14. Webb, S.R.: Some comments on the fast Hadamard transform of order twelve.IEEE Trans. Computers C-20 (1971) 588–589.

    Article  MATH  Google Scholar 

  15. Henderson, K.W.: Comments on ‘Computation of the fast Walsh-Fourier transform’.IEEE Trans. Computers C-19 (1970) 850–851.

    Article  MATH  Google Scholar 

  16. Lechner, R.J.: Comment on ‘Computation of the fast Walsh-Fourier transform’IEEE Trans. Computers C-19 (1970) 174.

    Article  Google Scholar 

  17. Pearl, J.: Basis-restricted transformations and performance measures for spectral representations.IEEE Trans. Information Theory IT-17 (1971) 751–752.

    Article  Google Scholar 

1.2.6

  • Andrews, H.C., Pratt, W.K.: Digital image transform processing.Proc. 1970 Walsh Functions Symposium, 183–194.

    Google Scholar 

  • Pearl, J.: Basis-restricted transformations and performance measures for spectral representations.Proc. 1971 Hawaii Int. Conf. System Sciences, 321–323.

    Google Scholar 

1.2.8

  1. Gibbs, E.: Walsh spectroscopy, a form of spectral analysis well suited to binary digital computation (1967). This paper is now accepted as fundamental but Gibbs never succeeded in publishing it.

    Google Scholar 

  2. Gibbs, E., Millard, M.J.: Walsh functions as solutions of a logical differential equation. DES Report 1 (1969); Some methods of solution of linear ordinary logical differential equations. DES Report 2 (1969). National Physical Laboratory, Teddington, Middlesex, England.

    Google Scholar 

  3. Gibbs, E.: Some properties of functions on the nonnegative integers less than 2n. DES Report 3 (1969); Functions that are solutions of a logical differential equation. DES Report 4 (1970). National Physical Laboratory, Teddington, Middlesex, England.

    Google Scholar 

  4. Gibbs, E.: Discrete complex Walsh functions; Sine and Walsh waves in physics. Proc. 1970 Walsh Functions Symposium, 106–122, 260–274.

    Google Scholar 

  5. Pichler, F.: Some aspects of a theory of correlation with respect to Walsh harmonic analysis (1970), AD 714–596.

    Google Scholar 

  6. Pearl, J.: Application of Walsh transform to statistical analysis.Proc. 1971 Hawaii Int. Conf. System Sciences, 406–407.

    Google Scholar 

  7. Pichler, F.: Walsh-Fourier-Synthese optimaler Filter.Arch, elektr. Übertragung 24 (1970) 350–360.

    MathSciNet  Google Scholar 

  8. Pichler, F.: Walsh functions and optimal linear systems; Walsh functions and linear system theory.Proc. 1970 Walsh Functions Symposium, 17–22 and 175–182.

    Google Scholar 

  9. Simmons, G. J.: Correlation properties of pseudo Rademacher-Walsh codes.Proc. 1971 Walsh Functions Symposium, 84–87.

    Google Scholar 

  10. Pitassi, D.A.: Fast convolution using Walsh transforms.Proc. 1971 Walsh Functions Symposium, 130–133.

    Google Scholar 

  11. Gethoefer, H.: Sequency analysis using correlation and convolution.Proc. 1971 Walsh Functions Symposium, 118–123.

    Google Scholar 

  12. Frank, T.H.: Implementation of dyadic correlation.Proc. 1971 Walsh Functions Symposium, 111–117.

    Google Scholar 

  13. Woodward, P.M.:Probability and information theory with applications to radar. New York: McGraw-Hill, 1953.

    MATH  Google Scholar 

  14. Rihaczek, A.W.:Principles of high-resolution radar. New York: McGraw-Hill, 1969.

    Google Scholar 

  15. Erickson, C.W.: Clutter cancelling in auto-correlation functions by binary sequency pairing (1961) AD 446-146.

    Google Scholar 

  16. Golay, M.J.: Complementary series.IRE Trans. Inform. Theory IT-7 (1961) 82–87.

    Article  MathSciNet  Google Scholar 

1.3.1

  1. Stumpers, F.L.: Theory of frequency modulation noise.Proc. IRE 36 (1948) 1081–1092.

    Article  Google Scholar 

  2. Mann, P.A.: Der Zeitablauf von Rauschspannungen.Elektr. Nachr.-Technik 20 (1943) 183–189.

    Google Scholar 

  3. Panter, P.F.:Modulation, noise and spectral analysis. New York: McGraw-Hill, 1965.

    Google Scholar 

  4. Harmuth, H.: A generalized concept of frequency and some applications.IEEE Trans. Inform. Theory IT-14 (1968) 375–382.

    Article  MathSciNet  Google Scholar 

  5. Alexandridis, N.A.: Relations among sequency, axis symmetry, and period of Walsh functions.IEEE Trans. Inform. Theory IT-17 (1971) 495–497.

    Article  MathSciNet  MATH  Google Scholar 

1.3.2

  1. Oppenheim, A.V., Schafer, R.W., Stockham, T.G.: Nonlinear filtering of multiplied and convolved signals.Proc. IEEE 56 (1968) 1264–1291.

    Article  Google Scholar 

  2. Pichler, F., Gibbs, J.E.: Comments on transformation of Fourier power spectra into Walsh power spectra.Proc. 1971 Walsh Functions Symposium, 51–54.

    Google Scholar 

  3. Ohnsorg, F.R.: Spectral modes of the Walsh-Hadamard transform.Proc. 1971 Walsh Functions Symposium, 55–59.

    Google Scholar 

  4. Yuen, C.K.: Upper bounds on Walsh transforms, Report No. 66 (1971), Basser Computing Department, University of Sidney, Australia.

    Google Scholar 

1.3.3

  • Claire, E.J., Farber, S.M., Green, R.R.: Practical techniques for transform data compression/image coding.Proc. 1971 Walsh Functions Symposium, 2–6.

    Google Scholar 

  • Yuen, C.K.: Walsh functions and Gray code.Proc. 1971 Walsh Functions Symposium, 68–73.

    Google Scholar 

  • Claire, E.J., Farber, S. M., Green, R.R.: Acoustic signature detection and classification techniques.Proc. 1971 Walsh Functions Symposium, 124–129.

    Google Scholar 

1.3.4

  • Rosenbloom, J.H.: Physical representation of the dyadic group.Proc. 1971 Walsh Functions Symposium, 158–165.

    Google Scholar 

  • Pichler, F.: On space state description of linear dyadic invariant systems.Proc. 1971 Walsh Functions Symposium, 166–170.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1972 Springer-Verlag, Berlin · Heidelberg

About this chapter

Cite this chapter

Harmuth, H.F. (1972). Mathematical Foundations. In: Transmission of Information by Orthogonal Functions. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61974-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61974-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-61976-2

  • Online ISBN: 978-3-642-61974-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics