Skip to main content

The Viscosity-Capillarity Criterion for Shocks and Phase Transitions

  • Conference paper
The Breadth and Depth of Continuum Mechanics
  • 435 Accesses

Abstract

This paper considers admissibility criteria for non-linear conservation laws based on (i) viscosity and (ii) capillarity and viscosity. It is shown by means of specific examples that while (ii) yields results consistent with experiment for materials exhibiting phase transitions, e. g. a van der Waals fluid, (i) does not.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Serrin, Phase transitions and interfacial layers for van der Waals fluids, Proc. of SAFA IV, Conference, Recent Methods in Nonlinear Analysis and Applications, Naples, March 21-28, 1980. A. Camfora, S. Rionero, C. Sbordone, C. Trombetti, editors.

    Google Scholar 

  2. D. J. Korteweg, Sur la forme que prennent les équations du mouvement des fluides si l’on tient compte des forces capillaires par des variations de densité, Archives Néérlandaises des Sciences Exactes et Naturelles.

    Google Scholar 

  3. C. Truesdell & W. Noll, The non-linear field theories of mechanics, Vol. III/3 of the Encyclopedia of Physics, S. FLUGGE, editor, Springer-Verlag: Berlin Heidelberg New York (1965).

    Google Scholar 

  4. M. Slemrod, Admissibility criteria for propagating phase boundaries in a van der Waals fluid, to appear in Archive for Rational Mechanics and Analysis.

    Google Scholar 

  5. M. Slemrod, Dynamic phase transitions in a van der Waals fluid, University of Wisconsin, Mathematics Research Center, TSR # 2298, Nov. 1981; to appear J. Differential Equations.

    Google Scholar 

  6. R. D. James, A relation between the jump in temperature across a propagating phase boundary and the stability of solid phases, to appear, Journal of Elasticity.

    Google Scholar 

  7. J. L. Ericksen, Equilibrium of bars, J. Elasticity, 5 (1975), 191–201.

    Article  MathSciNet  MATH  Google Scholar 

  8. R. Courant & K. O. Friedrichs, Supersonic flow and shock waves, John Wiley, Interscience: New York (1948).

    Google Scholar 

  9. Lord Rayleigh, Aerial plane waves of finite amplitude, Proc. Royal Society of London, Series A, 84, (1910), 247–284.

    Google Scholar 

  10. B. Wendroff, The Riemann problem for materials with non-convex equations of state, J. Mathematical Analysis and Applications, 38, (1972), 454–466.

    Article  MathSciNet  MATH  Google Scholar 

  11. C. M. Dafermos, The entropy rate admissibility criterion in thermoelasticity, Rendi- conti délia Classe di Scienze fisiche, matematiche e naturali, Accademia Nazionale dei Lincei, Serie VIII, (1974), 113 - 119.

    Google Scholar 

  12. J.K.Hale, Ordinary differential equations, Krieger Publishing Co.: Huntington, NY (1980).

    Google Scholar 

  13. A. B. Pippard, Elements of classical thermodynamics, Cambridge University Press: Cambridge (1964).

    Google Scholar 

  14. A. Sommerfeld, Thermodynamics and statistical mechanics, Academic Press: New York and London, (1964).

    Google Scholar 

  15. C. Truesdell & S. Bharatha, The concepts and logic of classical thermodynamics as a theory of heat engines, Springer-Verlag: Berlin-Heidelberg-New York (1977).

    MATH  Google Scholar 

  16. P. D. Lax, Hyperbolic systems of conservation laws and the mathematical theory of shock waves, SIAM Publications: Philadelphia (1973).

    MATH  Google Scholar 

  17. Ya. B. Zel’dovich & Yu. P. Raizer, Physics of shock waves and high temperature hydrodynamic phenomena, Vol. II. Academic Press: New York and London (1967).

    Google Scholar 

  18. G. Dettleff, P. A. Thompson, G. E. A. Meier & H.-D. Speckmann, An experimental study of liquefaction shock waves, J. Fluid Mechanics, 95, (1979), 279 - 304.

    Article  ADS  Google Scholar 

  19. M. Shearer, Admissibility criteria for shock wave solutions of a system of conservation laws of mixed type, to appear, Proc. Royal Society of Edinburgh.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

To Jerry Ericksen on the occasion of his 60th birthday

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hagan, R., Slemrod, M. (1986). The Viscosity-Capillarity Criterion for Shocks and Phase Transitions. In: The Breadth and Depth of Continuum Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61634-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61634-1_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-16219-3

  • Online ISBN: 978-3-642-61634-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics