Skip to main content

On the Rotated Stress Tensor and the Material Version of the Doyle-Ericksen Formula

  • Conference paper
The Breadth and Depth of Continuum Mechanics

Abstract

Doyle & Ericksen [1956, p. 77] observed that the Cauchy stress tensor σ can be derived by varying the internal free energy ψ with respect to the Rie- mannian metric g on the ambient space: σ=2ϱ ∂ψ/∂g. Their formula has gone virtually unnoticed in the literature of continuum mechanics. In this paper we shall establish the material version of this formula: \( \sum { = 2\varrho \partial \bar{\Psi }} /\partial G \) for the rotated stress tensor Σ, and shall address some of the reasons why these formulae are of fundamental significance. Making use of these formulae one can derive elasticity tensors and establish rate forms of the hyperelastic constitutive equations for the Cauchy stress tensor and the rotated stress tensor, as discussed in Sections 4 and 5. The role of the rotated stress tensor in the formulation of continuum theories has been noted by Green & Naghdi [1965]. Generalizations of hypoelasticity based on the use of the rotated stress tensor have been considered by Green & McInnis [1967].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Antman, S. S., & J. E. Osborne, 1979. “The Principle of Virtual Work and Integral Laws of Motion,” Arch. Rational Mech. Anal. 69, pp. 231–262.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Arnold, V. 1966a. “Sur la Géometrie Différentielle des Groupes de Liede Dimension Infinie et ses Applications à l’hydrodynamique des Fluids Parfaits,” Ann. Inst. Fourier, Grenoble, 16, pp. 319–361.

    Article  Google Scholar 

  • Arnold, V. 1966b. “An a priori Estimate in the Theory of Hydrodynamic Stability,” Trans. Amer. Math. Soc., 79 (1969), pp. 267–269.

    Google Scholar 

  • Arnold, V. 1978 Mathematical Methods of Classical Mechanics, New York: Springer-Verlag.

    MATH  Google Scholar 

  • Ball, J. M., & J. E. Marsden, 1984. Quasiconvexity at the boundary, second variations, and stability in nonlinear elasticity. Arch. Rational Mech. Anal, (to appear).

    Google Scholar 

  • Belinfante, F. 1939. “On the Current and the Density of the Electric Charge, the Energy, the Linear Momentum, and the Angular Momentum of Arbitrary Fields,” Physica, 6, p. 887 and 7, pp. 449–474.

    Google Scholar 

  • Coleman, B. D., & W. Noll, 1959. “On the Thermodynamics of Continuous Media,” Arch. Rational Mech. Anal., 4, pp. 97–128.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Dienes, J. K., 1979. “On the Analysis of Rotation and Stress Rate in Deforming Bodies,” Acta Mechanica, 32, pp. 217–232.

    Article  MathSciNet  MATH  Google Scholar 

  • Doyle, T. C., & J. L. Ericksen, 1956. Nonlinear Elasticity, in Advances in Applied Mechanics IV. New York: Academic Press, Inc.

    Google Scholar 

  • Ericksen, J. L., 1961. “Conservation Laws for Liquid Crystals,” Tran. Soc. Rheol, 5, pp. 23–34.

    Article  MathSciNet  Google Scholar 

  • Green, A. E., & B. C. Mcinnis, 1967. “Generalized Hypo-Elasticity,” Proc. Roy. Soc. Edinburgh, A 57, p. 220.

    Google Scholar 

  • Green, A. E., & P. M. Naghdi, 1965. “A General Theory of an Elastic-Plastic Continuum,” Arch. Rational Mech. Anal., 18, p. 251.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Green, A. E., & R. S. Rivlin, 1964a. “On Cauchy’s Equations of Motion,” J. Appl. Math, and Physics (ZAMP), 15, pp. 290–292.

    Article  MathSciNet  MATH  Google Scholar 

  • Green, A. E., & R. S. Rivlin, 1964b. “Multipolar Continuum Mechanics,” Arch. Rational Mech. Anal., 17, pp. 113–147.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Green, A. E., & R. S. Rivlin, 1964C. “Simple Force and Stress Multipoles,” Arch. Rational Mech. Anal., 16, pp. 327–353.

    Google Scholar 

  • Hawking, S., & G. Ellis, 1973. The Large Scale Structure of Spacetime, Cambridge, England: Cambridge Univ. Press.

    Google Scholar 

  • Holm, D., & B. Kuperchmidt, 1983. “Poisson Brackets and Clebch Representations for Magnetohydrodynamics, Multifluid Plasmas and Elasticity,” Physica D 6, 347–356.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Holm, D. D., J. E. Marsden, T. Ratiu & A. Weinstein, 1983. “Nonlinear Stability Conditions and a priori Estimates for Barotropic Hydrodynamics” Physics Lett. 98 A 15–21.

    Google Scholar 

  • Knops, R., & E. Wilkes, 1973. Theory of Elastic Stability, in Handbuch der Physik, VIa/3, S. Flügge, ed., Belin: Springer-Verlag.

    Google Scholar 

  • Lang, S., 1972. Differential Manifolds, Reading, MA: Addison-Wesley Publishing Co. Inc.

    MATH  Google Scholar 

  • Marsden, J. E., & T. J. R. Hughes, 1983. Mathematical Foundations of Elasticity, Englewood-Clifïs, N. Y. Prentice-Hall, Inc.

    Google Scholar 

  • Marsden, J. E., T. Ratiu & A. Weinstein, 1982. “Semidirect Products and Reduction in Mechanics,” Trans. Am. Math. Soc. (to appear).

    Google Scholar 

  • Misner, C., K. Thorne & J. Wheeler, 1982. Gravitation, S. Francisco: W. H. Freman & Company, Publishers, Inc.

    Google Scholar 

  • Naghdi, P. M., 1972. The Theory of Shells and Plates, in Handbuch der Physik, C. Truesdell ed., Vol. VIa/2,Berlin: Springer-Verlag.

    Google Scholar 

  • Noll, W., 1963. La Méthode Axiomatique dans les Mécaniques Classiques et Nouvelles, Paris, pp. 47–56.

    Google Scholar 

  • Rosenfeld, L., 1940. “Sur le Tenseur d’Impulsion-Energy,” Mem. Acad. R. Belg. Sei 18, no. 6, pp. 1–30.

    MathSciNet  Google Scholar 

  • Sewell, M. J., 1966. “On Configuration-Dependent Loading,” Arch. Rational Mech, Anal, 23, pp. 327–351.

    Article  MathSciNet  ADS  Google Scholar 

  • Sokolnikoff, I. S., 1956. The Mathematical Theory of Elasticity (2d ed.), New York: McGraw-Hill Book Company.

    Google Scholar 

  • Toupin, R. A., 1964. “Theories of Elasticity with Couple Stress,” Arch. Rational Mech. Anal., 11, pp. 385–414.

    Article  MathSciNet  ADS  Google Scholar 

  • Truesdell, C, 1955. “Hypo-elasticity,” J. Rational Mech. Anal., 4, pp. 83–133.

    MathSciNet  MATH  Google Scholar 

  • Truesdell, C., & R. A. Toupin, 1960. The Classical Field Theories, in Handbuch der Physik, Vol. III/l, S. Flügge, ed., Berlin: Springer-Verlag.

    Google Scholar 

  • Truesdell, C, & W. Noll, 1965. The Non-Linear Field Theories of Mechanics, in Handbuch der Physik, Vol. III/3, S. Flügge, ed., Berlin: Springer-Verlag.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to J. L. Ericksen Contents

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Simo, J.C., Marsden, J.E. (1986). On the Rotated Stress Tensor and the Material Version of the Doyle-Ericksen Formula. In: The Breadth and Depth of Continuum Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61634-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61634-1_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-16219-3

  • Online ISBN: 978-3-642-61634-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics