Skip to main content

Verfahren zur Wasserspaltung

  • Chapter
Wasserstoff als Energieträger

Überblick

Zweckmäßigerweise unterscheidet man die konventionellen chemischen Verfahren der Wasserspaltung von der elektrolytischen Wasserspaltung und der Wasserspaltung mittels thermischer Kreis- und Hybridprozesse. Wasserstoffgewinnung durch chemische Wasserspaltung basiert in der konventionellen Prozeßtechnik auf chemischen Redoxreaktionen, in denen Wasser letzten Endes mit Kohlenstoff oder Kohlenmonoxid reagiert.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur zu Kapitel 7

  1. Neumiiller, O.A.: Wasserstoff. Rompps Chemie Lexikon, 7. Aufl. Stuttgart: Franckh’sche Verlagsbuchhandlung 1977.

    Google Scholar 

  2. Bieger, F.: Kohlevergasung. In: Ullmanns Encyclopädie der Technischen Chemie, 4. Aufl. Bd. 14. Weinheim: Verlag Chemie, 1977, S. 357 ff; siehe auch: van Heck, K.H.: Kohlenvergasung zur Produktion von Wasserstoff. In: Wasserstoff, Energietrager der Zukunft, Vortragsveröffentlichungen, Tagung T—1—309—101—1, Haus der Technik, Essen 1981.

    Google Scholar 

  3. Winacker-Köchler: Chemische Technologie, 4. Aufl., Bd. 2. München: Hanser 1982, S. 111. ff.

    Google Scholar 

  4. Lede, J.; Lapique, F.; Vellerrnoux, J.; Int. J. Hydrogen Energy 8 (1983) 675.

    Article  Google Scholar 

  5. Funk, J.E.; Reinstrom, R.M.: Ind. Eng. Chem., Proc. Res. and Dev. 5 (1966) 336.

    Article  Google Scholar 

  6. Abraham, D.M.; Schreiner P.: Ind Eng. Chem. Eundam. 13 (1974) 30

    Google Scholar 

  7. JANAF, Thermochemical tables, 2nd edn., NSRDS—N BS 37 (1971).

    Google Scholar 

  8. van Velzen, D.: Kostenvergleiche der Herstellungsverfahren von Wasserstoff. In: Wasserstoff, Energietrager der Zukunft, Vortragsveröffentlichung, Tagung T—1—309—101—1, Haus der Technik, Essen 1981.

    Google Scholar 

  9. Tilak, D.V. et al.: Electrolytic production of hydrogen in comprehensive treatise of electrochemistry. Bockris, J.O’M. et. al. (eds.) Vol. 2. Plenum-Press 1981, pp. 1–166. Siehe auch: Leroy, D.L.: Int. J. Hydrogen Energy 8 (1983) 401.

    Google Scholar 

  10. Bailleux. C.: Damien A.: Moutet. A.: Int. J. Hydrogen Energy 8 (1983) 529–538.

    Article  Google Scholar 

  11. Dahlberg, R.: Die großtechnisehe Nutzung der Sonne. Selbstverlag: Dr. Reinhard Dahlberg, Innere Bergstraße 32, D—7101 Flein.

    Google Scholar 

  12. Fischer, J.; Hofmann, H.; Luft, G.; Wendt, H.: AIChE J. 26 (1980) 794–802.

    Article  Google Scholar 

  13. Wendt, H.: Seven years of research and development on advanced water electrolysis. A review of the research. In [7.19], 81–97.

    Google Scholar 

  14. Maksimova, I.N.; Yushkevich, V.F.; Russian J. Phys. Chem. (engl. transl.) 37 (1963) 475.

    Google Scholar 

  15. Yushkevich, V.F.; Maksimova, I.N.: Electrochimiya 3 (1967) H 91.

    Google Scholar 

  16. Smith, D.H.: Industrial water electrolysis in industrial electrochemical processes. Kuhn, A.T. (ed.). Amsterdam: Elsevier 1971, pp. 127–156.

    Google Scholar 

  17. Veziroglu, T.N.: Hydrogen energy progress I—IV. Proc. 3rd World Hydrogen Energy Conf. Tokyo, Japan. New York: Pergamon Press 1980.

    Google Scholar 

  18. Veziroglu, T.N.; van Vorst, W.D.; Kelley, JUL.: Hydrogen energy progress I—IV. Proc. 4th World Hydrogen Energy Conf., Pasadena, Calif/USA. New York: Pergamon Press 1982.

    Google Scholar 

  19. Imarisio, G.; Strub, A.A. (eds.): Hydrogen as an energy carrier. Proc. 3rd Int. Seminar, Lyon 25–77 May 1983 Dordrecht (NL): Reidel 1983.

    Google Scholar 

  20. Sillen, C.W.M.P. et al.: Gas bubble behaviour during water electrolysis. In: Hydrogen as an energy vector. Proc. Int. Seminar, Brüssel, 12.–14. Feb. 1980, Strub, A.A., Imarisio, G. (eds.) Dordrecht (NL): Reidel 1980, pp. 328–361.

    Chapter  Google Scholar 

  21. Modica, M. et al., Int. J. Hydrogen Energy 8 (1983) 419–435.

    Article  Google Scholar 

  22. Vandebore, H. et al.: Vol. I in [7.18], 107–116.

    Google Scholar 

  23. Dick, R.; Faye, P.: Vol. I in [7.19], 330–338.

    Google Scholar 

  24. Abe, I.; Fujimaki, T.; Matsurbara, M.: Vol. I in [7.18], 167–178.

    Google Scholar 

  25. Saltzman, M.P.; Williams, C.F.: Vol. I in [7.18], 141–150.

    Google Scholar 

  26. Murray, J.N.: Vol. I in [7.18], 151–158.

    Google Scholar 

  27. Hofmann, H.; Wendt, H.: Luxemburger Patent, No. 79.631 v. 10.5.1978.

    Google Scholar 

  28. Divisek, J.; Schmitz, J.H.: DOS D.E. 3.108 255, (1982) Chem. Abstracts 97, 205009 j. (1982).

    Google Scholar 

  29. Hofmann, H; Wendt, H.: Europ. Patentanmeldung, Nr. 83 106 333.4 v. 28.7.1983.

    Google Scholar 

  30. Giles, R.D.: Vol. I in [7.18], 257–265.

    Google Scholar 

  31. Nenner, T; Fahrasme, A.: Vol I in [7.18], 279–290.

    Google Scholar 

  32. Muller, J.; Lohrberg, K.; Wullenweber, H: Chem. Ing. Tech. 25 (1980) 435–436.

    Article  Google Scholar 

  33. Divisek, J., Schmitz, H., Mergel, J.; Chem. Ing. Tech. 52 (1980) 46.

    Article  Google Scholar 

  34. Liederbach, T.A.; Greenberg, A.M.; Thomas, V.H.: Commercial application of cathode coatings in electrolytic chlorine cells. In: Coulter, M.O. (ed.): Modern chloralkali technology. Chichester: Horwood 1980, pp 145–149

    Google Scholar 

  35. Wendt, H; Plzak, V.: Electrochim. Acta 28 (1983) 27–34.

    Article  Google Scholar 

  36. Vielstich, W.; Ber. Bunsenges. Phys. Chem. 84 (1980) 951–963.

    Article  Google Scholar 

  37. Prigent, M. et al.: The development of new electrocatalysts for advanced water electrolysis. In [7.19], 256–261.

    Google Scholar 

  38. Appleby, A.T.; Crepy, G.: New developments in alkaline electrolys technology. In: Proc. Symp. on Industrial Water Electrolysis. Srinivasan, S., Salzano, F.J., Landgrebe, A.R. (eds.). Vol. 78-4, 150–160, The Electrochemical Soc. Proc.

    Google Scholar 

  39. Brown, D.E.; Mahmood, N.M.; European patent No. 79.301.963.9.

    Google Scholar 

  40. Jaksie, M.M.. Electrochem. Acta 29 (1984) 1539.

    Article  Google Scholar 

  41. Brown, D.E.; Mahmood, M.N.; Mau, M.C.N.; Turner, A.K.: Electrochim. Acta 29 (1984) 1551

    Article  Google Scholar 

  42. Burke, L.D.; Lyons, M.E.; McCastley, M.: Optimization of thermally prepared ruthenium dioxide based anodes for use in water electrolysis cells. In [7.19], 128 ff.

    Google Scholar 

  43. Wendt, H. et al.: Alkaline water electrolysis at enhanced temperatures (120 to 160°C). Basic and material studies, engineering and economics. In [7.19], 267 ff.

    Google Scholar 

  44. Nuttall, L.J.; McElroy J.F.: Int. J. Hydrogen Energy 8 (1983) 609–615.

    Article  Google Scholar 

  45. Donitz, W.: Chem. Ing. Tech. 48 (1976) 159.

    Article  Google Scholar 

  46. Dietrich, G.; Schafer, W.; Donitz, W.: Development of thin film cells for nigh temperature electrolysis. In [7.19], 237–243.

    Google Scholar 

  47. Bockris, J.O’M.; Gutmann, F.; Craven, W.: The economics of the production of hydrogen. In [7.18], 335–366.

    Google Scholar 

  48. Wendt, H.: Chem. Ing. Tech. 56 (1984), 265.

    Article  Google Scholar 

  49. Kittel, G.; Hartig, K.J.: Thermochemische Methoden zur Wasserstofferzeugung. In: Getoff, N. Getoff, N.. Wasserstoff als Eneigieträger. Wien: Springer 1977, S. 61 ff.

    Chapter  Google Scholar 

  50. Hofmann, H.: Chem. Ing. Tech. 48 (1976) 87.

    Article  Google Scholar 

  51. Rusell, J.L.; Porter J.T.: THEME Conf. Proc. Miami Beach, Fl./USA, 11.35–11.48, 1974.

    Google Scholar 

  52. Kameyama, H; Yoshida, K; Kunii, D.: 39th Ann Meeting of the Chem. Eng. Soc. Japan 1974.

    Google Scholar 

  53. Hydrogen production from water using nuclear heat. Progr. Rep. No. 6, Commission of the European Communities, Joint Res. Centre, Ispra.

    Google Scholar 

  54. Cremer, H. et al.: Proc. Brit. Nuc. Eng. Soc, Int. Conf., Session II 19.1–19.7, London 1974

    Google Scholar 

  55. Shindo, Y. et al.: Int. J. Hydrogen Energy 8 (1983) 509.

    Article  Google Scholar 

  56. Whaley, T. et al.: Int. J. Hydrogen Energy 8 (1983) 767.

    Article  Google Scholar 

  57. Broggi, A. et al.: Status report of the Christina pilot plant for sulfuric acid decomposition. In [7.19], 46 ff.

    Google Scholar 

  58. Lu, P.T.W.: Int. J. Hydrogen Energy 8 (1983) 773.

    Article  Google Scholar 

  59. Struck, B.D. et al.: Development and scaling up of an electrolytic cell. In [7.19], 35 ff.

    Google Scholar 

  60. Schtttz, G.; Fiebelmann, P.: Int. J. Hyrogen Energy 5 (1980) 305.

    Article  Google Scholar 

  61. Feess, H.; Köster, K.; Schütz, G.H.: Int. J. Hydrogen Energy 6 (1981) 377.

    Article  Google Scholar 

  62. van Velzen, L.; Langenkamp, H.; Int. J. Hydrogen Energy 5 (1980) 85.

    Article  Google Scholar 

  63. van Velzen, L. et al.: Int. J. Hydrogen Energy 5 (1980) 41.

    Google Scholar 

  64. Schulze, J.: Wasserstoff; Kosten und Marktentwicklung. Vortrag anläßlich des Dechema-Fachgespräches: Zukünftige Aussichten der Wasserstofftechnologie, Frankfurt/ Main, 16/17. Jan. 1984.

    Google Scholar 

  65. Donitz, W.: Int. J. Hydrogen Energy 9 (1984) 817.

    Article  Google Scholar 

  66. Graetzel, M.: Energy resources through photochemistry and photocatalysis. New York: Academic Press 1983.

    Google Scholar 

  67. Hall, D.O.. Photochemical, photoelectrochemical and photobiological processes. Dordrecht: Reidel 1983.

    Google Scholar 

  68. Cardon, F.; Gomes, W., DeKeyser, W.: Photovoltaic and photoelectrochemical solar energy conversion. New York: Plenum Press 1981.

    Book  Google Scholar 

  69. Conolloy, J.S.: Photochemical conversion and storage of solar energy. New York: Academic Press 1981.

    Google Scholar 

  70. Yeager, D.; McKoy, V.; Segal, G.A.; J. Chem. Phys. 61 (1974) 755.

    Article  Google Scholar 

  71. Tomkiewicz, M.; Fay, H.; Appl. Phys. 18 (1979) 1.

    Article  Google Scholar 

  72. Maruska, H.P.; Gash, A.K.; Sol. Energy 70 (1978) 441

    Google Scholar 

  73. Vetter, K.J.: Electrochemical Kinetics. New York: Academic Press 1967.

    Google Scholar 

  74. Tributsch, II.: Ber. Bunsenges. 81 (1977) 361.

    Article  Google Scholar 

  75. Mavroides, J.G. et al.: Mat. Res. Bull. 10 (1975) 1023.

    Article  Google Scholar 

  76. Nozik, A: Appl. Phys. Lett. 29 (1976) 150.

    Article  Google Scholar 

  77. Ohashi. K.: McCann, J.: Bockris, J.O.M.; Nature 266 (1977) 610.

    Article  Google Scholar 

  78. Morisaki, H. et al.: Appl. Phys. Lett. 29 (1976) 338.

    Article  Google Scholar 

  79. Williams, R: J. Chem. Phys. 32 (1960) 1505.

    Article  Google Scholar 

  80. Gerischer, H,; Mindt, W.: Electrochim. Acta 13 (1968) 1329.

    Article  Google Scholar 

  81. Ilarriman, A.; West, M.A.: Photogcncration of hydrogen. New York: Academic Press 1982.

    Google Scholar 

  82. Zamaraev, K.I.; Parmon, N.V.: Cat. Rev. Set. Eng. 23 (1980) 261.

    Article  Google Scholar 

  83. Heidt, K.J.: J. Phys. Chem. 66 (1962) 336.

    Article  Google Scholar 

  84. Paleocrassas, S. N.: In: Lezivoglu, T.N. (ed.): Hydrogen energy. New York: Plenum Press 1975, p. 243.

    Chapter  Google Scholar 

  85. Graetzel, M.: Ber. Bunsenges. Phys. Chem. 84 (1980) 981.

    Article  Google Scholar 

  86. Lehn, J.M.; Sauvage, J.P.; Zissel, K.: Nouv. J. Chim. 4 (1980) 623.

    Google Scholar 

  87. Schumacher. E.: Chimia 32 (1978) 193.

    Google Scholar 

  88. Gray, C.T.; Gast, H.: Science 148 (1965) 186.

    Article  Google Scholar 

  89. Candon, P.: Nature 262 (1976) 715.

    Article  Google Scholar 

  90. Schlegel, H.G.; Adv. Microb. Physiol. 7 (1972) 205.

    Article  Google Scholar 

  91. Benemann, J.R.; Valentine, R.C.: Ad. Microb. Res. 8 (1972) 59.

    Google Scholar 

  92. Weaver, P.F.; Lien, S.; Seibert, M.: Sol. Energy 24 (1980) 3.

    Article  Google Scholar 

  93. Bishop, N.I.; Frick, M.; Jones, L.W.: Biological solar energy conversion. New York: Academic Press 1977.

    Google Scholar 

  94. Greenbaum, E.: Biotech, and Bioeng. 10 (1980) 1.

    Google Scholar 

  95. Benemann, J.R.: Solar energy through biophotolysis. NTFS-Rep., San—034—239—T1, 1979.

    Google Scholar 

  96. Boger, P.: Naturwiss. 65 (1978) 407.

    Article  Google Scholar 

  97. Pipes, W.O.: Adv. Appl. Microbiol. 8 (1966) 77.

    Article  Google Scholar 

  98. Wendt, H.; Plzak, V.: Electrocatalysis and electrocatalysts for cathodic hydrogen evolution and anodic oxidation of hydrogen. In: Wendt, H. (ed.): Electrochemical hydrogen techniques. Elsevier 1988.

    Google Scholar 

  99. Trasalt, S.: Electrocatalysis; the oxygen evolution reaction. In: Wendt, H. (ed.): Electrochemical hydrogen techniques. Elsevier 1988.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wendt, H., Bauer, G.H. (1989). Verfahren zur Wasserspaltung. In: Winter, CJ., Nitsch, J. (eds) Wasserstoff als Energieträger. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61538-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61538-2_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64864-9

  • Online ISBN: 978-3-642-61538-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics