Skip to main content
Book cover

Trees II pp 246–286Cite as

Maple (Acer spp.)

  • Chapter

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 5))

Abstract

The genus Acer (maple) comprises a large number of species distributed worldwide, but especially in the northern hemisphere. Because of their morphological diversities and physiological complexities, only a few Acer species have received attention from researchers in diverse fields; yet they hold onto their mysteries for scientists to unravel. The maple belongs to the Aceraceae family, Dicotyledoneae class of Angiosperms (Fernald 1950). There are up to 148 wild or cultivated Acer species, widely distributed throughout North America, Europe, Asia and North Africa (Olson and Gabriel 1974). Some selected species are listed alphabetically in Table 1. Santamour (1982) has examined the cambial peroxidase isoenzyme profiles of 64 Acer taxa in relation to various intrageneric classification schemes, and has revised the classification of some species.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albersheim P, Bauer WD, Keegstra K, Talmadge KW (1973) The structure of the wall of suspensioncultured sycamore cells. In: Loewus FC (ed) Biogenesis of plant cell wall polysaccharides. Academic Press, London New York, pp 117–148

    Google Scholar 

  • Ali MS, Akazawa T (1986) Association of H+-translocating ATPase in the Golgi membrane system from suspension-cultured cells of sycamore (Acer pseudoplatanus L.). Plant Physiol 81:222–227

    Article  PubMed  CAS  Google Scholar 

  • Ali MS, Mitsui T, Akazawa T (1986) Golgi-specific localization of transglycosylases engaged in glycoprotein biosynthesis in suspension-cultured cells of sycamore (Acer pseudoplatanus L.). Arch Biochim Biophys 251:421–431

    Article  CAS  Google Scholar 

  • Ali MS, Nishimura M, Mitsui T, Akazawa T, Kojima K (1985) Isolation and characterization of Golgi membranes from suspension-cultured cells of sycamore (Acer pseudoplatanus L.). Plant Cell Physiol 26:1119–1133

    CAS  Google Scholar 

  • Alibert G, Carrasco A, Boudet AM (1982) Changes in biochemical composition of vacuoles isolated from Acer pseudoplatanus L. during cell culture. Biochim Biophys Acta 721:22–29

    Article  CAS  Google Scholar 

  • Amileni A, Sala F, Cella R, Spadari S (1979) The major DNA polymerase in cultured plant cells: partial purification, and correlation with cell multiplication. Planta 146:521–527

    Article  CAS  Google Scholar 

  • Anderson JB, Ullrich RC (1979) Biological species of Armillaria mellea in North America. Mycologia 71:402–414

    Article  Google Scholar 

  • Aspinall GO, Molloy JA, Graig JWT (1969) Extracellular polysaccharides from suspension-cultured sycamore cells. Can J Biochem 47:1063–1070

    Article  PubMed  CAS  Google Scholar 

  • Bachelard EP, Stowe BB (1963) Rooting of cuttings of Acer rubrum L. and Eucalyptus camaldulensis Dehn. Aust J Biol Sci 16:751–767

    CAS  Google Scholar 

  • Bajaj YPS (1974) Potentials of protoplast culture work in agriculture. Euphytica 23:633–649

    Article  Google Scholar 

  • Bajaj YPS (1983) Haploid protoplasts. In: Giles KL (ed) Plant protoplasts. Academic Press, London New York, pp 113–141

    Google Scholar 

  • Bajaj YPS (1985) Cryopreservation of embryos. In: Kartha KK (ed) Cryopreservation of plant cells and tissues. CRC, Boca Raton, Fla, pp 227–242

    Google Scholar 

  • Bajaj YPS (ed) (1986a) Biotechnology in agriculture and forestry, vol 1. Trees I. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Bajaj YPS (ed) (1986b) Biotechnology of tree improvement for rapid propagation and biomass energy production. In: Biotechnology in agriculture and forestry, vol 1, Trees I. Springer, Berlin Heidelberg New York Tokyo, pp 1–23

    Google Scholar 

  • Bauer WD, Talmadge KW, Keegstra K, Albersheim P (1973) The structure of plant cell walls II. The hemicellulose of the walls of suspension-cultured sycamore cells. Plant Physiol 51:174–187

    Article  PubMed  CAS  Google Scholar 

  • Bayliss MW, Gould AR (1974) Studies on the growth in culture of plant cells XVIII. Nuclear cytology of Acer pseudoplatanus suspension cultures. J Exp Bot 25:772–783

    Article  CAS  Google Scholar 

  • Blein JP (1980) Cyanide stimulation of respiration of Acer pseudoplatanus cells in batch suspension culture and activation of the alternative pathway. Plant Sci Lett 19:65–72

    Article  CAS  Google Scholar 

  • Blein JP (1981) Action of some herbicides on growth, respiration, plasmalemma integrity, and proton extrusion of Acer pseudoplatanus cells I. Substituted ureas. Pestic Biochem Physiol 16:179–186

    Article  CAS  Google Scholar 

  • Blein JP (1982) Action of some herbicides on growth, respiration, plasmalemma integrity, and proton extrusion of Acer pseudoplatanus cells II. Amides, diphenyl ethers, nitriles, phenols, triazines, and uracils. Pestic Biochem Physiol 17:156–161

    Article  CAS  Google Scholar 

  • Blein JP (1983) Relation of lenacil metabolism with growth inhibition of Acer pseudoplatanus cell suspension. Plant Sci Lett 29:237–242

    Article  CAS  Google Scholar 

  • Blein JP, Scalla R (1984) A secondary mode of action of the herbicide lenacil: modification of K+ permeability of Acer pseudoplatanus cells. Plant Sci Lett 34:7–16

    Article  CAS  Google Scholar 

  • Blein JP, Suty L, Allard MR, Scalla R (1985) Characterization of a proton pump from Acer pseudoplatanus cell microsomes. Plant Sci 40:25–33

    Article  CAS  Google Scholar 

  • Blein JP, de Cherade X, Bergon M, Calmon JP, Scalla R (1986) Inhibition of adenosine triphosphatase activity from a plasma membrane fraction of Acer pseudoplatanus cells by 2,2,2-trichloroethyl 3,4-dichlorocarbanilate. Plant Physiol 80:782–785

    Article  PubMed  CAS  Google Scholar 

  • Bligny R (1977) Growth of suspension-cultured Acer pseudoplatanus L. cells in automatic culture units of large volume. Plant Physiol 59:502–505

    Article  PubMed  CAS  Google Scholar 

  • Bligny R, Douce R (1977) Mitochondria of isolated plant cells (Acer pseudoplatanus L.) II. Copper deficiency effects on cytochrome C oxidase and oxygen uptake. Plant Physiol 60:675–679

    Article  PubMed  CAS  Google Scholar 

  • Bligny R, Gaillard J, Douce R (1986) Excretion of laccase by sycamore (Acerpseudoplatanus L.) cells. Effects of a copper deficiency. Biochem J 237:583–588

    PubMed  CAS  Google Scholar 

  • Bligny R, Rebeille F, Douce R (1985) O2-triggered changes of membrane fatty acid composition have no effect on Arrhenius discontinuities of respiration in sycamore (Acer pseudoplatanus L.) cells. J Biol Chem 260:9166–9170

    PubMed  CAS  Google Scholar 

  • Blum BM (1973) Relation of sap and sugar yield to physical characteristics of sugar maple trees. For Sci 19:175–179

    Google Scholar 

  • Bonga JM (1974) Vegetative propagation: tissue and organ culture as an alternative to rooting cuttings. NZ J For Sci 4:253–260

    Google Scholar 

  • Bonga JM (1977) Applications of tissue culture in forestry. In: Reinert J, Bajaj YPS (eds) Applied and fundamental aspects of plant cell, tissue, and organ culture. Springer, Berlin Heidelberg New York, pp 93–108

    Google Scholar 

  • Bonga JM (1982) Vegetative propagation in relation to juvenility, maturity and rejuvenation. In: Bonga JM, Durzan DJ (eds) Tissue culture in forestry. Nijhoff/Junk, The Hague, pp 387–412

    Google Scholar 

  • Bonga JM, Durzan DJ (eds) (1982) Tissue culture in forestry. Nijhoff/Junk, The Hague

    Google Scholar 

  • Bright SWJ, Northcote DH (1974) Protoplast regeneration from normal and bromodeoxyuridine-resistant sycamore callus. J Cell Sci 16:445–463

    CAS  Google Scholar 

  • Bright SWJ, Northcote DH (1975) A deficiency of hypoxanthine phosphoribosyltransferase in a sycamore callus resistant to azaguanine. Planta 123:79–89

    Article  CAS  Google Scholar 

  • Brown CL (1964) The influence of external pressure on the differentiation of cells and tissues cultured in vitro. In: Zimmermann MH (ed) The formation of wood in forest trees. Academic Press, London New York, pp 389–404

    Google Scholar 

  • Brown CL (1980a) Production of woody biomass and cloning of superior genotypes. Plants as energy transducers: systems and applications. Symp South Sect Am Soc Plant Physiol, Atlanta GA, Feb 1980

    Google Scholar 

  • Brown CL (1980b) Application of tissue culture technology to production of woody biomass. Int Energ Ag Proc, Brighton, England, Oct 30-Nov 1, 1980

    Google Scholar 

  • Canut H, Alibert G, Boudet AM (1985) Hydrolysis of intracellular proteins in vacuoles isolated from Acer pseudoplatanus L. cells. Plant Physiol 79:1090–1093

    Article  PubMed  CAS  Google Scholar 

  • Cecchini JP, Miassod R (1979) Studies on the methylation of cytoplasmic ribosomal RNA from cultured higher plant cells. Eur J Biochem 98:203–214

    Article  PubMed  CAS  Google Scholar 

  • Cella R, Sala F, Street HE (1976) Studies on the growth in culture of plant cells XIX. Changes in the levels of free and membrane-bound polysomes during the growth of Acer pseudoplatanus cells in batch suspension culture. J Exp Bot 27:263–276

    Article  CAS  Google Scholar 

  • Church TW, Jr, Godman RM (1966) The formation and development of dormant buds in sugar maple. For Sci 12:301–306

    Google Scholar 

  • Cocking EC (1972) Plant cell protoplasts — isolation and development. Annu Rev Plant Physiol 23:29–50

    Article  CAS  Google Scholar 

  • Cocking EC, Evans PK (1973) The isolation of protoplasts. In: Street HE (ed) Plant tissue and cell culture. Bot Monogr Univ Cal Press, Blackwell, Oxford, pp 100–120

    Google Scholar 

  • Conforth JW, Milborrow BV, Ryback S, Wareing PF (1965) Chemistry and physiology of “dormins” in sycamore. Identity of sycamore “dormin” with abscisin II. Nature (London) 205:1269–1270

    Article  Google Scholar 

  • Conger BV (ed) (1981) Principles and practices of cloning agricultural plants via in vitro techniques. CRC, Boca Raton, Fla

    Google Scholar 

  • Copping LG, Street HE (1972) Properties of the invertases of cultured sycamore cells and changes in their activity during culture growth. Physiol Plant 26:346–354

    Article  CAS  Google Scholar 

  • Cornel D, Grignon C, Rona JP, Heller R (1983) Measurement of intracellular potassium activity in protoplasts of Acer pseudoplatanus: origin of their electropositivity. Physiol Plant 57:203–209

    Article  CAS  Google Scholar 

  • Cox RM (1983) Sensitivity of forest plant reproduction to long range transported air pollutants: in vitro sensitivity of pollen to simulated acid rain. New Phytol 95:269–276

    Article  CAS  Google Scholar 

  • Critchfield WB (1971) Shoot growth and heterophylly in Acer. J Arnold Arbor 52:240–266

    Google Scholar 

  • Cunningham FE, Peterson RJ (1965) Air-layering sugar maple. US For Serv Res Pap NE-42

    Google Scholar 

  • Cure WW, Mott RL (1980) Nitrogen metabolism in cell suspension of Acer pseudoplatanus L. Plant Physiol 65 Suppl (Abstr 493):90

    Google Scholar 

  • Dalessandro G, Northcote DH (1977) Changes in enzymic activities of nucleoside diphosphate sugar interconversions during differentiation of cambium to xylem in sycamore and poplar. Biochem J 162:267–279

    PubMed  CAS  Google Scholar 

  • Dalessandro G, Northcote DH (1981a) Xylan synthetase activity in differentiated xylem cells of sycamore trees (Acer pseudoplatanus). Planta 151:53–60

    Article  CAS  Google Scholar 

  • Dalessandro G, Northcote DH (1981b) Increase of xylan synthetase activity during xylem differentiation of the vascular cambium of sycamore and poplar trees. Planta 151:61–67

    Article  CAS  Google Scholar 

  • Darvill AG, McNeil M, Albersheim P (1978) Structure of plant cell walls VIII. New pectic polysaccharide. Plant Physiol 62:418–422

    Article  PubMed  CAS  Google Scholar 

  • Darvill JE, McNeil M, Darvill AG, Albersheim P (1980) Structure of plant cell walls XI. Glucuronoarabinoxylan, a second hemicellulose in the primary cell walls of suspension-cultured sycamore cells. Plant Physiol 66:1135–1139

    Article  PubMed  CAS  Google Scholar 

  • De Maggio AE, Freeberg JA (1969a) Dormancy development in Acer platanoides: morphological and histological characteristics. Phytomorphology 19:22–28

    Google Scholar 

  • De Maggio AE, Freeberg JA (1969b) Dormancy regulation: hormonal interaction in maple (Acer platanoides). Can J Bot 47:1165–1169

    Article  Google Scholar 

  • Digby J, Wareing PF (1966) The effect of growth hormones on cell division and expansion in liquid suspension culture of Acer pseudoplatanus. J Exp Bot 17:718–725

    Article  CAS  Google Scholar 

  • Dodds JH (1983) Tissue culture of hardwoods. In: Dodds JH, Roberts LW (eds) Tissue culture of trees. AVI, Westport, CT, pp 22–28

    Google Scholar 

  • Donnelly JR (1971) Individual tree differences confound effects of growth regulators in rooting sugar maple softwood cuttings. USDA For Serv Res Note NE-129

    Google Scholar 

  • Donnelly JR (1974) Shoot size significantly affects rooting response of sugar maple softwood cuttings. USDA For Serv Res Note NE-184

    Google Scholar 

  • Donnelly JR (1977) Morphological and physiological factors affecting formation of adventitious roots on sugar maple stem cuttings. USDA For Serv Res Pap NE-365

    Google Scholar 

  • Doree M (1973) Metabolism of exogenous adenine by Acer pseudoplatanus cells. Phytochemistry 12:2101–2108

    Article  CAS  Google Scholar 

  • Doree M, Leguay JJ, Terrine C (1972) CO2 flux and changes in cell permeability in cells of Acer pseudoplatanus in liquid culture. Physiol Veg 10:115–131

    Google Scholar 

  • Dubois J, Morvan H (1979) Effects of temperature and light on the growth of Silene alba and maple cell suspensions. Bull Soc Bot Fr 125:407–420

    Google Scholar 

  • Dumbroff EB, De Silva N (1972) Patterns of change in the soluble nitrogen pool in seeds of Acer ginnala during stratification. Can J Bot 50:221–226

    Article  CAS  Google Scholar 

  • Dunstan DI, Thorpe TA (1984) Plant tissue culture technology and its potential for use with forest and bioenergy tree species. In: Hasnain S (ed) 5th Can Bioenergy R&D Sem, Ottawa, Can. Elsevier, London, pp 23–35

    Google Scholar 

  • Durzan DJ (1982) Nitrogen metabolism and vegetative propagation of forest trees. In: Bonga JM, Durzan DJ (eds) Tissue culture in forestry. Nijhoff/Junk, The Hague, pp 256–324

    Google Scholar 

  • Durzan DJ, Campbell RA (1974a) Prospects for the mass production of improved stock of forest trees by cell and tissue culture. Can J For Res 4:151–174

    Article  Google Scholar 

  • Durzan DJ, Campbell RA (1974b) Prospects for the introduction of traits in forest trees by cell and tissue culture. NZ J For Sci 4:261–266

    Google Scholar 

  • Everett NP (1981) 2,4-D-independent cell cultures of sycamore (Acer pseudoplatanus L.): isolation, responses to 2,4-D and kinetin, and sensitivities to antimetabolites. J Exp Bot 32:171–182

    Article  CAS  Google Scholar 

  • Everett NP, Street HE (1979) Studies on the growth in culture of plant cells XXIV. Effects of 2,4-dichlorophenoxyacetic acid and light on the growth and metabolism of Acer pseudoplatanus L. suspension cultures. J Exp Bot 30:409–417

    Article  CAS  Google Scholar 

  • Everett NP, Wang TL, Gould AR, Street HE (1981) Studies on the control of the cell cycle in cultured plant cells II. Effects of 2,4-dichlorophenoxyacetic acid (2,4-D). Protoplasma 106:15–22

    Article  CAS  Google Scholar 

  • Farmer RE (1974) Vegetative propagation and the genetic improvement of North American hardwoods. NZ J For Sci 4:211–220

    Google Scholar 

  • Fayle DCF (1965) Rooting habit of sugar maple and yellow birch. Can Dep For Publ 1120

    Google Scholar 

  • Fernald ML (1950) Gray’s Manual of Botany. Am Book Co, New York

    Google Scholar 

  • Fowler ME (1963) A guide to forest disease research in the Northeast. USDA For Serv NEFES Rep

    Google Scholar 

  • Fowler MW (1978) Regulation of carbohydrate metabolism in cell suspension cultures. In: Thorpe TA (ed) Frontiers of plant tissue culture. Calgary Univ Press, pp 443–452

    Google Scholar 

  • Fowler MW, Clifton A (1974) Activities of enzymes of carbohydrate metabolism in cells of Acer pseudoplatanus L., maintained in continuous (chemostat) culture. Eur J Biochem 45:445–450

    Article  PubMed  CAS  Google Scholar 

  • Fowler MW, Clifton A (1975a) Rhythmic oscillation in carbohydrate metabolism during growth of sycamore (Acer pseudoplatanus L.) cells in continuous (chemostat) culture. Biochem Soc Trans 3:395–398

    PubMed  CAS  Google Scholar 

  • Fowler MW, Clifton A (1975b) Hexokinase activity in cultured sycamore cells. New Phytol 75:533–538

    Article  CAS  Google Scholar 

  • Fromm M, Taylor LP, Walbot V (1985) Expression of genes transferred into monocot and dicot plant cells by electroporation. Proc Natl Acad Sci USA 82:5824–5828

    Article  PubMed  CAS  Google Scholar 

  • Gabriel WJ (1967) Reproductive behavior in sugar maple: self-compatibility, cross-compatibility, agamospermy, and agamocarpy. Silv Genet 16:165–168

    Google Scholar 

  • Gabriel WJ (1972) Phenotypic selection in sugar maple for superior sap-sugar production. USDA For Serv Res Pap NE-221

    Google Scholar 

  • Gabriel WJ (1973) Morphological differences between black maple and sugar maple and their hybrids. NEFTIC Proc 20:39–46

    Google Scholar 

  • Gabriel WJ (1982) Genetic improvement in sap-sugar production. In: Sugar maple research: sap production, processing, and marketing of maple syrup. USDA For Serv NEFES, Broomall PA, Gen Tech Rep NE-72, pp 38–41

    Google Scholar 

  • Gabriel WJ, Marvin JW, Taylor FH (1961) Rooting greenwood cuttings of sugar maple: effect of clone and medium. USDA For Serv Pap 144

    Google Scholar 

  • Garrett LD, Huyler NK, Sendak PE (1982) Improvements in sap processing techniques. In: Sugar maple research: sap production, processing, and marketing of maple syrup. USDA For Serv NEFES, Broomall PA, Gen Tech Rep NE-72, pp 87–97

    Google Scholar 

  • Gathercole RWE, Street HE (1976) Isolation, stability and biochemistry of a p-fluorophenylalanineresistant cell line of Acer pseudoplatanus L. New Phytol 77:29–41

    Article  CAS  Google Scholar 

  • Gathercole RWE, Street HE (1978) A p-fluorophenylalanine-resistant cell line of sycamore with increased contents of phenylalanine, tyrosine and phenolics. Z Pflanzenphysiol 89:283–287

    CAS  Google Scholar 

  • Gathercole RWE, Mansfield KJ, Street HE (1976) Carbon dioxide as an essential requirement for cultured sycamore cells. Physiol Plant 37:213–217

    Article  CAS  Google Scholar 

  • Gautheret RJ (1985) History of plant tissue and cell culture: a personal account. In: Vasil IK (ed) Cell culture and somatic cell genetics of plants, vol 2: Cell growth, nutrition, cytodifferentiation and cryopreservation. Academic Press, London New York Orlando, pp 2–59

    Google Scholar 

  • Glas R, Robinson DG (1982) On the induction of cup-shaped dictyosomes in suspension cultured Acer pseudoplatanus. Protoplasma 113:97–102

    Article  CAS  Google Scholar 

  • Godman RM (1965) Sugar maple (Acer saccharum Marsh.). In: Fowells HA (ed) Silvics of forest trees of the United States. USDA Agric Handb 271, pp 65–73

    Google Scholar 

  • Godman RM, Mattson GA (1970) The sprouting potential of dormant buds on the bole of pole-size sugar maple. USDA For Serv Res Note NC-88

    Google Scholar 

  • Gould AR, Street HE (1975) Kinetic aspects of synchrony in suspensions cultures of Acer pseudoplatanus L. J Cell Sci 17:337–348

    PubMed  CAS  Google Scholar 

  • Gould AR, Everett NP, Wang TL, Street HE (1981) Studies on the control of the cell cycle in cultured plant cells I. Effects of nutrient limitation and nutrient starvation. Protoplasma 106:1–13

    Article  CAS  Google Scholar 

  • Gregory RA (1977) Cambial activity and ray cell abundance in Acer saccharum. Can J Bot 55:2559–2564

    Article  Google Scholar 

  • Gregory RA (1978) Living elements of the conducting secondary xylem of sugar maple (Acer accharum Marsh.). IAWA Bull 4:65–69

    Google Scholar 

  • Gregory RA (1980) Annual cycle of shoot development in sugar maple. Can J Bot 10:316–326

    Google Scholar 

  • Gregory RA, Wargo PM (1986) Timing of defoliation and its effect on bud development, starch reserves, and sap sugar concentration in sugar maple. Can J For Res 16:10–17

    Article  Google Scholar 

  • Gregory RA, Williams MW, Jr, Donnelly J, Tyree MT (1987) The effects of stress factors on carbohydrate reserves, cold acclimation, and dieback in sugar maple. Grodon Conf Temper. Stress Plants Proc, Santa Barbara, pp 186–191

    Google Scholar 

  • Grossmann K, Jung J (1984) A new micro-method for testing plant growth retardants in cell suspension cultures. Plant Cell Rep 3:156–158

    Article  CAS  Google Scholar 

  • Grossmann K, Rademacher W, Sauter H, Jung J (1984) Comparative potency of different plant growth retardants in cell cultures and intact plants. J Plant Growth Regul 3:197–205

    Article  CAS  Google Scholar 

  • Hanus D, Rohr R (1985) Micropropagation de l’érable par bouturage in vitro de fragments de germination de trois especes. Can J Bot 63:277–280

    Article  Google Scholar 

  • Henshaw GG, Jha KK, Mehta AR, Skakeshaft DJ, Street HE (1966) Studies on the growth in culture of plant cells I. Growth patterns in batch propagated suspension cultures. J Exp Bot 17:362–377

    Article  Google Scholar 

  • Hepting GH (1971) Diseases of forest and shade trees of the United States. USDA For Serv Agric Handb 386

    Google Scholar 

  • Hook DD, Kormanik PP, McAlpine RG (1974) Sprouting and rooting on horizontally planted cutting of sycamore. NZ J For Sci 4:221–227

    Google Scholar 

  • Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method of transferring genes into plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  • Huber SC, Akazawa T (1986) A novel sucrose pathway for sucrose degradation in cultured sycamore cells. Plant Physiol 81:1008–1013

    Article  PubMed  CAS  Google Scholar 

  • Irving RM (1968) Study of dormancy, germination, and growth of seeds and buds of Acer negundo. Plant Physiol 43:S49 (Abstr)

    Article  Google Scholar 

  • Irving RM, Lanphear FO (1968) Regulation of cold hardiness in Acer negundo. Plant Physiol 43:9–13

    Article  PubMed  CAS  Google Scholar 

  • Janerette CA (1978) An in vitro study of seed dormancy in sugar maple. For Sci 24:43–49

    Google Scholar 

  • Janerette CA (1979) Seed dormancy in sugar maple. For Sci 25:307–311

    Google Scholar 

  • Jessup W, Fowler MW (1977) Interrelationships between carbohydrate metabolism and nitrogen assimilation in cultured plant cells III. Effect of the nitrogen source on the pattern of carbohydrate oxidation in cells of Acer pseudoplatanus grown in culture. Planta 137:71–76

    Article  CAS  Google Scholar 

  • Johnson LPV (1945) Physiological studies on sap flow in the sugar maple, Acer saccharum Marsh. Can J Res 23C:192–197

    Article  Google Scholar 

  • Johnson RW, Tyree MT, Dixon MA (1987) A requirement for sucrose in xylem sap flow from dormant maple trees. Plant Physiol 84:495–500

    Article  PubMed  CAS  Google Scholar 

  • Jones CH, Bradley JL (1933) The carbohydrate contents of the maple tree. Vt Agric Exp Stn Bull 358

    Google Scholar 

  • Jones CH, Edson AW, Morse WJ (1903) The maple sap flow. Vt Agric Exp Stn Bull 103

    Google Scholar 

  • Journet EP, Bligny R, Douce R (1986) Is the availability of substrate for the tricarboxylic acid a limiting factor for uncoupled respiration in sycamore (Acer pseudoplatanus) cells? Biochem J 233:571–576

    PubMed  CAS  Google Scholar 

  • Kallio E, Tubbs CH (1980) Sugar maple. An American wood. USDA For Serv FS-246

    Google Scholar 

  • Kartha KK (ed) (1985) Cryopreservation of plant cells and organs. CRC, Boca Raton, Fla

    Google Scholar 

  • Keegstra K, Talmadge KW, Bauer WD, Albersheim P (1973) The structure of plant cell walls III. A model of the walls of suspension-cultured sycamore cells based on the interconnections of the macromolecular components. Plant Physiol 51:188–196

    Article  PubMed  CAS  Google Scholar 

  • Kerns HR, Meyer MM, Jr (1986) Tissue culture propagation of Acer X freemanii using thidiazuron to stimulate shoot tip proliferation. Hortsci 21:1209–1210

    CAS  Google Scholar 

  • Kessler KJ (1966) Growth and development of mycorrhizae of sugar maple (Acer saccharum Marsh.). Can J Bot 44:1413–1425

    Article  Google Scholar 

  • King PJ (1976a) Studies on the growth in culture of plant cells XX. Utilization of 2,4-dichlorophenoxyacetic acid by steady-state cell cultures of Acer pseudoplatanus L. J Exp Bot 27:1053–1072

    Article  CAS  Google Scholar 

  • King PJ (1976b) Growth characteristics of Acer pseudoplatanus L. cells grown in chemostat conditions in the presence of urea alone as a source of nitrogen. Plant Sci Lett 6:409–418

    Article  CAS  Google Scholar 

  • King PJ (1977) Studies on the growth in culture of plant cells XXII. Growth limitation by nitrate and glucose in chemostat cultures of Acer pseudoplatanus L. J Exp Bot 28:142–155

    Article  CAS  Google Scholar 

  • King PJ (1980) Cell proliferation and growth in suspension cultures. Int Rev Cytol Suppl 11A:25–53

    Google Scholar 

  • King PJ, Mansfield KJ, Street HE (1973) Control of growth and cell division in plant cell suspension cultures. Can J Bot 51:1807–1823

    Article  Google Scholar 

  • King PJ, Cox BJ, Fowler MW, Street HE (1974) Metabolic events in synchronised cell cultures of Acer pseudoplatanus L. Planta 117:109–122

    Article  CAS  Google Scholar 

  • Koelling MR (1968) Rooting ability of sugar maple cuttings depend on date of collection in each region. Tree Planters Notes 19:20–22

    Google Scholar 

  • Konar RN, Nagmani R (1974) Tissue culture as a method for vegetative propagation of forest trees. NZ J For Sci 4:279–290

    CAS  Google Scholar 

  • Kriebel HB (1957) Patterns of genetic variation in sugar maple. Ohio Agric Exp Stn Res Bull 791

    Google Scholar 

  • Kriebel HB, Gabriel WJ (1969) Genetics of sugar maple. USDA For Serv Res Pap WO-7

    Google Scholar 

  • Kriebel HB, Wang CW (1962) The interaction between provenance and degree of chilling in bud-break of sugar maple. Silv Genet 11:125–130

    Google Scholar 

  • Kurkdjian A (1982) Absorption and accumulation of nicotine by Acer pseudoplatanus and Nicotiana tabacum cells. Physiol Veg 20:73–83

    CAS  Google Scholar 

  • Kurkdjian A, Guern J (1981) Vacuolar pH measurement in higher plant cells: evaluation of the methylamine method. Plant Physiol 67:953–957

    Article  PubMed  CAS  Google Scholar 

  • Kurkdjian A, Leguay JJ, Guern J (1979) Influence of fusicoccin on the control of cell division by auxins. Plant Physiol 64:1053–1057

    Article  PubMed  CAS  Google Scholar 

  • Kurkdjian A, Mathieu Y, Guern J (1982) Evidence for an action of 2,4-dichlorophenoxyacetic acid on the vacuolar pH of Acer pseudoplatanus cells in suspension culture. Plant Sci Lett 27:77–86

    Article  CAS  Google Scholar 

  • Kurkdjian A, Barbier-Brygoo H, Manigault J, Manigault P (1984a) Distribution of vacuolar pH values within populations of cells protoplasts and vacuoles isolated from suspension cultures and plant tissues. Physiol Veg 22:193–198

    Google Scholar 

  • Kurkdjian A, Manigault P, Manigault J, Guern J (1984b) Action of fusicoccin on the vacuolar pH of Acer pseudoplatanus protoplasts as evidenced by 9-aminoacridine microfluorimetry. Plant Sci Lett 34:1–5

    Article  CAS  Google Scholar 

  • Lamport DTA (1963) Oxygen fixation into hydroxyproline of plant cell wall protein. J Biol Chem 238:1438–1440

    PubMed  CAS  Google Scholar 

  • Lamport DTA (1964) Cell suspension cultures of higher plants: isolation and growth energetics. Exp Cell Res 33:195–206

    Article  PubMed  CAS  Google Scholar 

  • Lamport DTA (1970) Cell wall metabolism. Annu Rev Plant Physiol 21:235–270

    Article  CAS  Google Scholar 

  • Lamport DTA (1978) Cell wall carbohydrates in relation to structure and function. In: Thorpe TA (ed) Frontiers of plant tissue culture. Calgary Univ Press, pp 235–244

    Google Scholar 

  • Lamport DTA, Northcote DH (1960) The use of tissue cultures for the study of plant-cell walls. Biochem J 76:52 p (Abstr)

    Google Scholar 

  • Lane FE, Baily LF (1964) Isolation and characterization studies on the β-inhibitor in dormant buds of the silver maple (Acer saccharinum L.). Physiol Plant 17:91–99

    Article  CAS  Google Scholar 

  • Larsson HC, Jaciw P (1967) Sap and syrup of five maple species. Ont Dep Lands For Res Rep 69

    Google Scholar 

  • Lefebvre A, Maizonnier D, Gaudry JC, Clair D, Scalla R (1987) Some effects of the herbicide EL-107 on cellular growth and metabolism. Weed Res 27:125–134

    Article  CAS  Google Scholar 

  • Leguay JJ, Guern J (1975) Quantitative effects of 2,4-dichlorophenoxyacetic acid on growth of suspension-cultured Acer pseudoplatanus cells. Plant Physiol 56:356–359

    Article  PubMed  CAS  Google Scholar 

  • Leguay JJ, Guern J (1977) Quantitative effects of 2,4-dichlorophenoxyacetic acid on growth of suspension-cultured Acer pseudoplatanus cells II. Influence of 2,4-D metabolism and intra cellular pH on the control of cell division by intra cellular 2,4-D concentration. Plant Physiol 60:265–270

    Article  PubMed  CAS  Google Scholar 

  • Leguay JJ, Tyburn C (1982) Mode of action of an auxin antagonist: the 2,4,6-trichlorophenoxyacetic acid, inhibitor of the growth of Acer pseudoplatanus L. cell suspensions. Physiol Veg 19:491–502

    Google Scholar 

  • Lescure AM (1969) Mutagénèse et selection de cellules d’Acer pseudoplatanus L. cultivee in vitro. Physiol Veg 7:237–250

    CAS  Google Scholar 

  • Lindsey K, Yeoman MM (1985) Dynamics of plant cell cultures. In: Vasil IK (ed) Cell culture and somatic cell genetics of plants, vol 2: Cell growth, nutrition, cytodifferentiation and cryopreservation. Academic Press, London New York Orlando, pp 61–101

    Google Scholar 

  • Linsmaier EM, Skoog F (1965) Organic growth factor requirements of tobacco tissue cultures. Physiol Plant 18:100–127

    Article  CAS  Google Scholar 

  • Loewus MW (1977) Hydrogen isotope effects in the cyclization of D-glucose-6-phosphate by myo-inositol 1-phosphate synthase. J Biol Chem 252:7221–7223

    PubMed  CAS  Google Scholar 

  • Lumis GP (1985) Stimulating root regeneration in newly transplanted landscape trees. Highlights Agric Res (Ontario) 8(4):7–10

    Google Scholar 

  • MacArthur JD, Blackwood AC (1966) Taphole sanitation pellets and sugar maple sap yield. For Chron 42:380–386

    Google Scholar 

  • Macherel D, Nurit F, Lescure AM, Tissut M (1986b) Effects of carbanilates on the growth and development of cell suspension cultures of Acer pseudoplatanus. Physiol Plant 66:536–542

    Article  CAS  Google Scholar 

  • Macherel D, Tissut M, Nurit F, Ravanel P, Bergon M, Calmon J-P (1986c) Inhibitory action of an isopropyl carbanilate series on mitosis, respiration and photosynthesis. Physiol Veg 24:97–108

    CAS  Google Scholar 

  • Macherel D, Viale A, Akazawa T (1986a) Protein phosphorylation in amyloplasts isolated from suspension-cultured cells of sycamore (Acer pseudoplatanus L.). Plant Physiol 80:1041–1044

    Article  PubMed  CAS  Google Scholar 

  • Mackenzie IA, Street HE (1972) The cytokinins of cultured sycamore cells. New Phytol 71:621–631

    Article  CAS  Google Scholar 

  • Mackenzie IA, Konar A, Street HE (1972) Cytokinins and the growth of cultured sycamore cells. New Phytol 71:633–638

    Article  CAS  Google Scholar 

  • Maillard F, Zryd JP (1977) Métabolisme de l’acide indolyl-3-acétique dans les cultures des cellules d’Acer pseudoplatanus cultives in vitro. Can J Bot 55:2530–2534

    Article  CAS  Google Scholar 

  • Maillot C, Pennarun AM, Heller R (1983) Adjustement hydrique des cellules libres adaptées à des concentrations élevées de NaCl. Physiol Veg 21:501–507

    CAS  Google Scholar 

  • Manion PD (1981) Tree disease concepts. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Martin JB, Bligny R, Rebeille F, Douce R, Leguay JJ, Mathieu Y, Guern J (1982) A 31P nuclear magnetic resonance study of intracellular pH of plant cells cultivated in liquid medium. Plant Physiol 70:1156–1161

    Article  PubMed  CAS  Google Scholar 

  • Marvin JW (1958) The physiology of maple sap flow. In: Thimann KV, Critchfield WB, Zimmerman MH (eds) Physiology of forest trees. Ronald, New York, pp 95–124

    Google Scholar 

  • Marvin JW, Erickson RO (1956) A statistical evaluation of some of the factors responsible for the flow of sap from the sugar maple. Plant Physiol 31:57–61

    Article  PubMed  CAS  Google Scholar 

  • Marvin JW, Green MT (1951) Temperature-induced sap flow in excised stems of Acer. Plant Physiol 26:565–580

    Article  PubMed  CAS  Google Scholar 

  • Marvin JW, Green MT (1959) Some factors affecting the yield from maple tapholes. Vt Agric Exp Stn Bull 611

    Google Scholar 

  • Marvin JW, Morselli MF, Laing FM (1967) A correlation between sugar concentration and volume yields in sugar maple: an 18-year study. For Sci 13:346–351

    Google Scholar 

  • Marvin JW, Morselli MF, Mathes MC (1971) Rapid low temperature hydrolysis of starch to sugars in maple stems and in maple tissue cultures. Cryobiology 8:339–344

    Article  PubMed  CAS  Google Scholar 

  • Mathes MC (1967) The in vitro growth of Acer saccharum and Acer pensylvanicum callus tissue. Can J Bot 45:2195–2202

    Article  Google Scholar 

  • Mathes MC, Morselli MF, Marvin JW (1971) The in vitro growth and metabolism of Acer saccharum tissue. Can J Bot 49:495–500

    Article  CAS  Google Scholar 

  • Mathes MC, Morselli MF, Marvin JW (1973) Use of various carbon sources by isolated maple callus cultures. Plant Cell Physiol 14:797–801

    CAS  Google Scholar 

  • Mathieu Y (1982/83) pH-dependence of phosphoenolpyruvate carboxylase from Acer pseudoplatanus cell suspensions. Plant Sci Lett 28:111–119

    CAS  Google Scholar 

  • Maynard CA (1986) Population genetics of forest trees: implications for the application of in vitro techniques. In Vitro Cell Dev Biol 22:231–233

    Article  Google Scholar 

  • McKee HC (1964) Air pollution and its effect on trees. 40th Int Shade Tree Conf Proc Houston, pp 149–163

    Google Scholar 

  • McLaughlin SB (1985) Effects of air pollution on forests. A critical review. J Air Pollut Contrib Assoc 35:512–534

    CAS  Google Scholar 

  • McNeil M, Darvill AG, Albersheim P (1981) Structure of plant cell walls X. Rhamnogalacturonan I, a structurally complex pectic polysaccharide in the walls of suspension-cultured sycamore cells. Plant Physiol 66:1128–1134

    Article  Google Scholar 

  • Medve RJ (1970) The relationship of beaded rootlets and mycorrhizae of red maple (Acer rubrum L.). Am Midland Nat 83:631–634

    Article  Google Scholar 

  • Miassod R, Cecchini JP (1979a) Hormone effect on the half-life of the 42S pre-rRNA of cultured sycamore cells. FEBS Lett 96:277–282

    Article  Google Scholar 

  • Miassod R, Cecchini JP (1979b) Partial base-methylation and other structural differences in the 17S ribosomal RNA of sycamore cells during growth in cell culture. Biochim Biophys Acta 562:292–301

    PubMed  CAS  Google Scholar 

  • Misawa M, Sakato K, Tanaka H, Hayashi M, Samejima H (1974) Production of physiologically active substances by plant cell suspension cultures. In: Street HE (ed) Tissue culture and plant science. Academic Press, London New York, pp 405–432

    Google Scholar 

  • Mitchell CD, Fretz TA (1977) Cadmium and zinc toxicity in white pine, red maple and Norway spruce. J Am Soc Hortic Sci 102:81–84

    Google Scholar 

  • Moloney MM, Elliott MC (1982) Tryptophan and indole-3-acetic acid accumulation in Acer cell cultures and its relationship with cell autolysis. Planta 156:326–331

    Article  CAS  Google Scholar 

  • Moloney MM, Hall JF, Robinson GM, Elliott MC (1983) Auxin requirements of sycamore cells in suspension culture. Plant Physiol 71:927–931

    Article  PubMed  CAS  Google Scholar 

  • Morris GJ, Coulson G, Meyer MA, McLellan MR, Fuller BJ, Grout BWW, Pritchard HW, Knight SC (1983) Cold-shock, a widespread cellular reaction. Cryo Lett 4:179–192

    CAS  Google Scholar 

  • Morselli MF (1972) A study to experimentally induce differentiation in tissue cultures from sugar maple trees. In: Forest research progress in 1971. USDA Coop State Res Serv, pp 20–21

    Google Scholar 

  • Morselli MF (1975) Nutritional value of pure maple syrup. Nat Maple Syrup Dig 14(2):12

    Google Scholar 

  • Morselli MF (1985) Maple decline. Causes unclear. New Engl Farmer 9:B1–3

    Google Scholar 

  • Morselli MF, Baggett KL (1984) Mass spectrometric determination of cane sugar and corn syrup in maple syrup by use of 13C/12C ratio: collaborative study. J Assoc Off Anal Chem 67:22–24

    CAS  Google Scholar 

  • Morselli MF, Sendak PE (1980) Maple syrup containers: effect of storage on the stability of three table grades. Vt Agric Exp Stn Res Rep 6

    Google Scholar 

  • Morselli MF, Whalen ML (1984) In-line ultraviolet light treatment of sugar maple sap at different flow rates and on sap concentrated by reverse osmosis. Vt Agric Exp Stn Res Rep 37

    Google Scholar 

  • Morselli MF, Whalen ML (1987a) Maple Research Publication List. Vt Agric Exp Stn and Ext Serv Q 227

    Google Scholar 

  • Morselli MF, Whalen ML (1987b) Sap and syrup elemental values for maples in decline due to environmental stress. (Abstr 0-10) in N.E. Sect Am Soc Plant Physiol Meet, Rensselaer Polyt. Inst, Troy NY

    Google Scholar 

  • Morselli MF, Katagiri KJ, Ehrlich AD (1974) Gnotoculture of apical meristems of sugar maple (Acer saccharum Marsh.). (Abstr) In: Advances in plant science through tissue culture. 3rd Int Congr Plant tissue and cell culture, Univ Leicester, England, p 159

    Google Scholar 

  • Morselli MF, Marvin JW, Laing FM (1978) Image-analyzing computer in plant science: more and larger vascular rays in sugar maples of high sap and sugar yield. Can J Bot 56:983–986

    Article  Google Scholar 

  • Morselli MF, Whalen ML, Laing FM, Sendak PE, Howard DB (1985) Changes in maple syrup from prolonged warm sap storage. Vt Agric Exp Stn Res Rep 43

    Google Scholar 

  • Morvan H (1974) Evolution du pH du milieu au cours de la culture des suspensions cellulaires d’érable (Acer pseudoplatanus L.). Essai d’interprétation par le method electrophysiologique. C R Acad Sci Paris 278:3207–3210

    CAS  Google Scholar 

  • Mott RL, Smeltzer RH, Mehra-Palta A, Zobel BJ (1977) Production of forest trees by tissue culture. Tappi 60:62–64

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nag KK, Street HE (1975 ) Freeze preservation of cultured plant cells I. The pretreatment phase. Physiol Plant 34:254–260

    Article  Google Scholar 

  • Nag KK, Street HE (1975b) Freeze preservation of cultured plant cells II. The freezing and thawing phases. Physiol Plant 34:261–265

    Article  Google Scholar 

  • Nielsen GR (1984) Maple leaf cutter. Vt Agric Ext Serv EL 34

    Google Scholar 

  • Nielsen GR (1985) Insect control in home grounds — trees and shrubs. Vt Agric Ext Serv Brief 1182

    Google Scholar 

  • Nikolaeva MG, Petrova VN, Daletskaya TV (1973) Effect of abscissic acid separately and jointly with other hormones on growth of embryos and germination of seeds of tatar maple. Fiziol Rast 20:1117–1126; and Sov Plant Physiol 20:951-959

    CAS  Google Scholar 

  • Olson DF, Jr, Gabriel WJ (1974) Acer L. maple. In: Seeds of woody plants in the United States. USDA For Serv Agric Handb 450, pp 187–194

    Google Scholar 

  • O’Malley PER, Milburn JA (1983) Freeze-induced fluctuations in xylem sap pressure in Acer pseudoplatanus. Can J Bot 61:3100–3106

    Article  Google Scholar 

  • Orton ER, Jr (1978) Single-node cuttings: a simple method for the rapid propagation of plants of selected clones of Acer rubrum L. Plant Propagator 24:12–15

    Google Scholar 

  • Paquereau-Trapy F, Guern J (1983) Influence of temperature on growth yield and distribution of 2,4-D molecules between Acer pseudoplatanus cells and their culture medium. Physiol Veg 21:197–204

    CAS  Google Scholar 

  • Paull RE, Jones RL (1978) Regulation of synthesis and secretion of fucose containing polysaccharides in cultured sycamore cells. Aust J Plant Physiol 5:457–468

    CAS  Google Scholar 

  • Paull RE, Jones RL (1981) Kinetics of secretion of extracellular polysaccharide by cultured sycamore cells. Z Pflanzenphysiol 102:457–462

    CAS  Google Scholar 

  • Pennarun AM, Kovoor A, Heller R (1977) Čerenkov counting of 24Na in suspension cultures — an economical use of scintillation apparatus for studying ion exchange. Physiol Plant 39:323–327

    Article  CAS  Google Scholar 

  • Perry TO (1971) Dormancy in trees in winter. Science 171:29–36

    Article  PubMed  CAS  Google Scholar 

  • Perry TO, Wang CW (1960) Genetic variation in the winter chilling requirement for date of dormancy break for Acer rubrum. Ecology 41:790–794

    Article  Google Scholar 

  • Phillips R, Henshaw GG (1977) The regulation of synthesis of phenolics in stationary phase cell cultures of Acer pseudoplatanus L. J Exp Bot 28:785–794

    Article  CAS  Google Scholar 

  • Pinfield NJ, Stobart AK (1972) Hormonal regulation of germination and early seedling development in Acer pseudoplatanus L. Planta 104:134–145

    Article  CAS  Google Scholar 

  • Pinfield NJ, Davies HV, Stobart AK (1974) Embryo dormancy in seeds of Acer platanoides. Physiol Plant 32:268–272

    Article  Google Scholar 

  • Pritchard HW, Grout BWW, Reid DS, Short KC (1982) The effects of growth under water stress on the structure, metabolism and cryopreservation of cultured sycamore cells. In: Franks F, Mathias SF (eds) The biophysics of water. Wiley & sons, New York, pp 315–318

    Google Scholar 

  • Pritchard HW, Grout BWW, Short KC (1986) Osmotic stress as a pregrowth procedure for cryopreservation. 2. Water relations and metabolic state of sycamore (Acer pseudoplatanus) and soybean (Glycine-max cultivar biloxi) cell suspensions. Ann Bot 57:371–378

    Google Scholar 

  • Radojević L, Landré P, Nesković M (1980) Isolement de trois souches tissulaires a partir d’embryons immatures d’Acer negundo L. Z Pflanzenphysiol 99:191–198

    Google Scholar 

  • Rébeillé F, Bligny R, Martin JB, Douce R (1985) Effect of sucrose starvation on sycamore (Acer pseudoplatanus) cell carbohydrate and Pi status. Biochem J 226:679–684

    PubMed  Google Scholar 

  • Redenbaugh K, Nichol J, Kossler ME, Paasch B (1984) Encapsulation of somatic embryos for artificial seed production. In vitro 20 (Abstr 66):256–257

    Google Scholar 

  • Reich PB, Schoettle AW, Amundson RG (1986) Effects of ozone and acidic rain on photosynthesis and growth in sugar maple and northern red oak seedlings. Environ Pollut A 40:1–15

    Article  CAS  Google Scholar 

  • Rembur J (1974) Cycle cellulaire et teneurs en ADN nucleaire des cellules en suspension de l’Acer pseudoplatanus en phase exponentielle de croissance. Heterogeneite de la culture. Can J Bot 52:1535–1543

    Article  CAS  Google Scholar 

  • Robinson DG (1980) Dictyosome-endoplasmic reticulum associations of higher plant cells? A serial-section analysis. Eur J Cell Biol 23:22–36

    PubMed  CAS  Google Scholar 

  • Rohr R, Hanus D (1987) Vegetative propagation of wavy grain sycamore maple. Can J For Res 17:418–420

    Article  Google Scholar 

  • Rona JP, Grignon C (1972) Obtention de protoplastes à partir de suspensions de cellules d’Acer pseudoplatanus L. CR Acad Sci Paris 274D:2976–2979

    Google Scholar 

  • Rose AH, Lindquist OH (1982) Insects of eastern hardwood trees. Can For Serv For Tech Rep 29

    Google Scholar 

  • Rudnick R, Suszka B (1969) Abscissic acid in non-dormant seeds of silver maple (Acer saccharinum L.). Bull Acad Pol Sci, Ser Sci Biol 17:325–331

    Google Scholar 

  • Ryder NS, Goad LJ (1980) The effect of the 3-hydroxy-3-methylglutaryl coA reductase inhibitor ML-236B on phytosterol synthesis in Acer pseudoplatanus tissue culture. Biochim Biophys Acta 619:424–427

    PubMed  CAS  Google Scholar 

  • Santamour FS (1982) Cambial peroxidase isoenzymes in relation to systematics of Acer. Torrey Bot Club Bull 109:152–161

    Article  CAS  Google Scholar 

  • Sauter JJ, Iten W, Zimmermann MH (1973) Studies on the release of sugar into the vessels of sugar maple (Acer saccharum). Can J Bot 51:1–8

    Article  CAS  Google Scholar 

  • Schwaller MR, Schnetzler CC, Marshall PE (1983) The changes in leaf reflectance of sugar maple (Acer saccharum Marsh.) seedlings in response to heavy metal stress. Int J Rem Sens 4:93–100

    Article  Google Scholar 

  • Sendak PE, Morselli MF (1984) Reverse osmosis in the production of maple syrup. For Prod J 34(7/8):57–61

    Google Scholar 

  • Sendak PE, Jenkins WL (1982) Market structure of the maple industry and syrup grading standards. In: Sugar maple research: sap production, processing, and marketing of maple syrup. USDA For Serv NEFES, Broomall PA, Gen Tech Rep NE-72, pp 98-106

    Google Scholar 

  • Shigo AL, Laing FM (1970) Some effects of paraformaldehyde on wood surrounding tapholes in sugar maple trees. USDA For Serv Res Pap NE-161

    Google Scholar 

  • Shih CY, Dumbroff EB, Peterson CA (1985) Developmental studies of the stratification-germination process in sugar maple embryos. Can J Bot 63:903–908

    Google Scholar 

  • Shillito RD, Saul MW, Paszkowski J, Müller M, Potrykus I (1985) High efficiency direct gene transfer to plants. Bio/Technology 3:1099–1103

    Article  Google Scholar 

  • Shillito RD, Saul MW, Paszkowski J, Potrykus I (1986) Direct gene transfer to plants. IAPTC Newslett 48:5–15

    Google Scholar 

  • Shimizu T, Clifton A, Komamine A, Fowler MW (1977) Changes in metabolite levels during growth of Acer pseudoplatanus (sycamore) cells in batch suspension culture. Physiol Plant 40:125–129

    Article  CAS  Google Scholar 

  • Short KC, Brown EG, Street HE (1969) Studies on the growth in culture of plant cells V. Large scale culture of Acer pseudoplatanus L. cell suspensions. J Exp Bot 20:572–578

    Article  Google Scholar 

  • Shortle WC, Kotheimer JB, Rich AE (1972) Effect of salt injury on shoot growth of sugar maple, Acer saccharum. Plant Dis Rep 56:1004–1007

    CAS  Google Scholar 

  • Shortle WC, Menge JA, Cowling EB (1978) Interaction of bacteria, decay fungi, and live sapwood in discoloration and decay of trees. Eur J For Pathol 8:293–300

    Article  Google Scholar 

  • Simmonds JA, Dumbroff EB (1974) High energy charge as a requirement for axis elongation in response to gibberellic acid and kinetin during stratification of Acer saccharum seeds. Plant Physiol 53:91–95

    Article  PubMed  CAS  Google Scholar 

  • Sluis CJ, Walker K (1985) Commercialization of plant tissue culture propagation. IAPTC Newslett 47:2–12

    Google Scholar 

  • Smiley ET, Kielbaso JJ, Proffer TJ (1986) Maple disease epidemic in southeastern Michigan. J Arbor 12:126–128

    Google Scholar 

  • Sommer HE, Brown CL (1979) Application of tissue culture to forest tree improvement. In: Sharp WR, Larsen PO, Paddock EF, Raghavan V (eds) Plant cell and tissue culture, principles and applications. Ohio State Univ Press, Columbus, pp 461–491

    Google Scholar 

  • Sommer HE, Caldas LS (1981) In vitro methods applied to forest trees. In: Thorpe TA (ed) Plant tissue culture. Methods and applications in agriculture. Academic Press, London New York, pp 349–358

    Google Scholar 

  • Sparrow RC, Sparrow AH (1965) Relative radiosensitivities of woody and herbaceous spermatophytes. Science 147:1449–1451

    Article  PubMed  CAS  Google Scholar 

  • Sperry JS, Donnelly JR, Tyree MT (1988a) A method for measuring hydraulic conductivity and embolism in xylem. Plant Cell Environ 11:35–40

    Article  Google Scholar 

  • Sperry JS, Donnelly JR, Tyree MT (1988b) Seasonal occurrence of xylem embolism in sugar maple (Acer saccharum Marsh.). Am J Bot 75:1212–1218

    Article  Google Scholar 

  • Sproston T, Jr, Scott WW (1954) Valsa leucostomoides, the cause of decay and discoloration in tapped sugar maples. Phytopathology 44:12–13

    Google Scholar 

  • Staehelin LA, Chapman RL (1987) Secretion and membrane recycling in plant cells. Novel intermediary structures visualized in ultrarapidly frozen sycamore and carrot suspension-cultured cells. Planta 171:43–57

    Article  Google Scholar 

  • Stark EW (1954) Wood anatomy of aceraceae indigenous to the United States. Purdue Univ Agric Exp Stn Bull 606

    Google Scholar 

  • Stevens CL, Eggert RL (1945) Observations on the causes of the flow of sap in red maple. Plant Physiol 20:636–648

    Article  PubMed  CAS  Google Scholar 

  • Stevenson TT, McNeil M, Darvill AG, Albersheim P (1986) Structure of plant cell walls XVIII. An analysis of the extracellular polysaccharides of suspension-cultured sycamore cells. Plant Physiol 80:1012–1019

    Article  PubMed  CAS  Google Scholar 

  • Strauss A, King PJ (1984) Application of the disk method to cultured plant cells I. Inhibition zones. Plant Cell Tissue Org Cult 3:111–122

    Article  CAS  Google Scholar 

  • Strauss A, Bucher F, King PJ (1984) Application of the disk method to cultured plant cells II. Exhibition zones. Plant Cell Tissue Org Cult 3:123–130

    Article  CAS  Google Scholar 

  • Stuart R, Street HE (1971) Studies on the growth in culture of plant cells X. Further studies on the conditioning of culture media by suspensions of Acer pseudoplatanus L. cells. J Exp Bot 22:96–106

    Article  CAS  Google Scholar 

  • Sugawara Y, Sakai A (1974) Survival of suspension-cultured sycamore cells cooled to the temperature of liquid nitrogen. Plant Physiol 54:722–724

    Article  PubMed  CAS  Google Scholar 

  • Suszka B, Tomaszewska E (1971) Plant growth regulators in non-dormant seeds of silver maple (Acer saccharinum L.). Arbor Kornickie 16:157–167

    Google Scholar 

  • Talmadge KW, Keegstra K, Bauer WD, Albersheim P (1973) The structure of plant cell walls I. The macromolecular components of the walls of suspension-cultured sycamore cells with a detailed analysis of the pectic polysaccharides. Plant Physiol 51:158–173

    Article  PubMed  CAS  Google Scholar 

  • Taylor FH (1956) Variation in sugar content of maple sap. Vt Agric Exp Stn Bull 587

    Google Scholar 

  • Teulieres C, Alibert G, Ranjeva R (1985) Reversible phosphorylation of tonoplast proteins involves tonoplast-bound calcium-calmodulin-dependent protein kinases and protein phosphatases. Plant Cell Rep 4:199–201

    Article  CAS  Google Scholar 

  • Thellier M, Thoiron B, Thoiron A, Le Guiel J, Luttge U (1980) Effects of lithium and potassium on recovery of solute uptake capacity of Acer pseudoplatanus cells after gas-shock. Physiol Plant 49:93–99

    Article  CAS  Google Scholar 

  • Thoiron B, Thoiron A, Le Guiel J, Luttge U, Thellier M (1979) Solute uptake of Acer pseudoplatanus cell suspensions during recovery from gas-shock. Physiol Plant 46:352–356

    Article  CAS  Google Scholar 

  • Thoiron B, Thoiron A, Espejo J, Le Guiel J, Luttge U, Thellier M (1980) The effects of temperature and inhibitors of protein biosynthesis on the recovery from gas-shock of Acer pseudoplatanus cell cultures. Physiol Plant 48:161–167

    Article  CAS  Google Scholar 

  • Thomas TH, Wareing PF, Robinson PM (1965) Action of the sycamore “dormin” as a gibberellin antagonist. Nature (London) 205:1270–1272

    Article  CAS  Google Scholar 

  • Tippett JT, Shigo AL (1981) Barrier zone formation: a mechanism of tree defence against vascular pathogens. IAWA Bull 2:163–168

    Google Scholar 

  • Tognoli L, Colombo R (1986) Protein phosphorylation in intact cultured sycamore (Acer pseudoplatanus) cells and its response to fusicoccin. Biochem J 235:45–48

    PubMed  CAS  Google Scholar 

  • Towill LE, Mazur P (1975) Studies on the reduction of 2,3,5-triphenyl-tetrazolium chloride as a viability assay for plant tissue cultures. Can J Bot 53:1097–1102

    Article  Google Scholar 

  • Towill LE, Mazur P (1976) Osmotic shrinkage as a factor in freezing injury in plant tissue cultures. Plant Physiol 57:290–296

    Article  PubMed  CAS  Google Scholar 

  • Trapy F, Guern J (1980) Sensibilité à la température de la reponse a Pauxine des cellules d’Acer pseudoplatanus cultivées in vitro. Physiol Veg 18:649–653

    Google Scholar 

  • Trimble GR, Jr, Smith HC (1970) Sprouting of dormant buds on border trees. USDA For Serv, Res Pap NE-179

    Google Scholar 

  • Tyree MT (1983) Maple sap uptake, exudation, and pressure changes correlated with freezing exotherms and thawing endotherms. Plant Physiol 73:277–285

    Article  PubMed  CAS  Google Scholar 

  • Tyree MT, Dixon MA (1986) Water stress in induced cavitation and embolism in some woody plants. Physiol Plant 66:397–405

    Article  Google Scholar 

  • Vanderhoven C, Zryd JP (1978) Changes in malate content and in enzymes involved in dark CO2 fixation during growth of Acer pseudoplatanus cells in suspension culture. Physiol Plant 43:99–103

    Article  CAS  Google Scholar 

  • Verma DC, Tavares J, Loewus FA (1976) Effect of benzyladenine, 2,4-dichlorophenoxyacetic acid, and D-glucose on myo-inositol metabolism in Acer pseudoplatanus L. cells grown in suspension culture. Plant Physiol 57:241–244

    Article  PubMed  CAS  Google Scholar 

  • Vogelmann HW, Badger GI, Bliss M, Klein RM (1985) Forest decline on Camels Hump. Torrey Bot Club Bull 112:274–287

    Article  Google Scholar 

  • Walters RS (1982) Sugar maple sap collection. In: Sugar maple research: sap production, processing, and marketing maple syrup. USDA For Serv NEFES, Broomall PA, Gen Tech Rep NE-72, pp 16–24

    Google Scholar 

  • Walters RS, Shigo AL (1978) Discoloration and decay associated with paraformaldehyde-treated tapholes in sugar maple. Can J For Res 8:54–60

    Article  CAS  Google Scholar 

  • Walters RS, Yawney HW (1982) Sugar maple tapholes. In: Sugar maple research: sap production, processing, and marketing of maple syrup. USDA For Serv NEFES, Broomall PA, Gen Tech Rep NE-72, pp 8–15

    Google Scholar 

  • Wang AS, Phillips RL (1984) Synchronization of suspension-cultured cells. In: Vasil IK (ed) Cell culture and somatic cell genetics of plants, vol 1: Laboratory procedures and their applications. Academic Press, London New York Orlando, pp 175–181

    Google Scholar 

  • Wargo PM (1972) Defoliation-induced chemical changes in sugar maple roots stimulate growth of Armillaria mellea. Phytopathology 62:1278–1283

    Article  CAS  Google Scholar 

  • Webb DP, Staden J van, Wareing PF (1973) Seed dormancy in Acer. Changes in endogenous cytokinins, gibberellins and germination inhibitors during the breaking of dormancy in Acer saccharum Marsh. J Exp Bot 24:105–116

    Article  CAS  Google Scholar 

  • Weisman LF, Morselli MF (1981) Biochemical and morphological stratification in Acer saccharum root callus. In vitro 17:1111–1116

    Article  CAS  Google Scholar 

  • Werner A, Morselli MF (1979) Ploidy level: a factor in the development of Acer saccharum and Acer rubrum stem tissue cultures. In: Sharp WR, Larsen PO, Paddock EF, Raghavan V (eds) Plant cell and tissue culture: Principles and applications. Ohio State Univ Press, Columbus, p 856

    Google Scholar 

  • Westing AH (1966) Sugar maple decline: an evaluation. Econ Bot 20:196–212

    Article  Google Scholar 

  • Westing AH (1969) Plants and salt in the roadside environment. Phytopathology 59:1174–1181

    Google Scholar 

  • Weston GD, Farrimond JA, Elliott MC (1978) The effects of 2,4-dichlorophenoxyacetic acid, indol-34L-acetic acid and kinetin on the activity of auxin-destroying enzymes of sycamore cell suspension cultures. Experientia 34L:468–469

    Article  Google Scholar 

  • Whalen ML, Morselli MF (1983) In-line ultraviolet light treatment of sugar maple sap. Vt Agric Exp Stn Res Rep 32

    Google Scholar 

  • Whalen ML, Morselli MF (1984a) Sodium values in maple syrup. Maple Syrup J 4(1):19–20

    Google Scholar 

  • Whalen ML, Morselli MF (1984b) Fungi associated with pure maple syrup packed at the minimum recommended reheating temperature. J Food Prot 47:688–689

    Google Scholar 

  • Whalen ML, Morselli MF (1986) Microbial ecology of xylem sap of Acer saccharum Marsh. (Abstr 257) Am J Bot 73:694

    Google Scholar 

  • Wiegand KM (1906) Pressure and flow of sap in the maple. Am Nat 40:409–453

    Article  Google Scholar 

  • Wilkinson R (1985) Year-to-year variation in sap-sugar concentration of sugar maple progenies and its potential effects on genetic selection for high sap sugar. 29th NE For Tree Improvement Conf Proc 1985, Morgantown, WV, pp 120–133

    Google Scholar 

  • Willits CO, Hills CH (1976) Maple sirup producers manual. USDA ARS Agric Handb 134

    Google Scholar 

  • Wilson BF (1968) Red maple stump sprouts development. The first year. Harvard For Pap 18

    Google Scholar 

  • Wilson G (1976) A simple and inexpensive design of chemostat enabling steady-stage growth of Acer pseudoplatanus L. cells under phosphate-limiting conditions. Ann Bot (London) 40:919–932

    Google Scholar 

  • Wilson G (1978) Growth and product formation in large scale and continuous culture system. In: Thorpe TA (ed) Frontiers of plant tissue culture. Univ Calgary Press, pp 169–177

    Google Scholar 

  • Wilson G (1980a) The application of continuous culture methods to plant cells. IAPTC Newslett 31:2–6

    Google Scholar 

  • Wilson G (1980b) Continuous culture of plant cells using the chemostat principle. In: Fletcher A (ed) Advances in biochemical engineering, vol 16: Plant cultures I. Springer, Berlin Heidelberg New York, pp 1–25

    Google Scholar 

  • Wilson SB, King PJ, Street HE (1971) Studies on the growth in culture of plant cells XII. A versatile system for the large scale batch or continuous culture of plant cell suspensions. J Exp Bot 22:177–207

    Article  Google Scholar 

  • Winton LL, Huhtinen O (1976) Tissue cultures of trees. In: Miksche JP (ed) Modern methods in forest genetics. Springer, Berlin Heidelberg New York, pp 243–264

    Google Scholar 

  • Withers LA (1976) The morphology of free and bound polysomes in cells and subcellular fractions of suspension cultures of Acer pseudoplatanus. J Exp Bot 27:277–281

    Article  Google Scholar 

  • Withers LA (1978) The freeze-preservation of synchronously dividing cultured cells of Acer pseudoplatanus L. Cryobiology 15:87–92

    Article  PubMed  CAS  Google Scholar 

  • Withers LA (1980a) Cryopreservation of plant cell and tissue cultures. In: Ingram DS, Helgeson JP (eds) Tissue culture methods for plant pathologists. Blackwell, Oxford, pp 63–70

    Google Scholar 

  • Withers LA (1980b) Tissue culture storage for genetic conservation. Int Board Plant Genet Resourc/FAO, UN, Rome

    Google Scholar 

  • Withers LA (1980c) The cryopreservation of higher plant tissue and cell cultures; an overview with some current observations and future thoughts. CryoLett 1:239–250

    Google Scholar 

  • Withers LA (1984) Freeze preservation of cells. In: Vasil IK (ed) Cell culture and somatic cell genetics of plants, vol 1: Laboratory procedures and their applications. Academic Press, London New York, pp 605–620

    Google Scholar 

  • Withers LA, Davey MR (1978a) A fine-structural study of the freeze-preservation of plant tissue cultures I. The frozen state. Protoplasma 94:207–219

    Article  Google Scholar 

  • Withers LA, Davey MR (1978b) A fine-structural study of the freeze-preservation of plant tissue cultures II. The thawed state. Protoplasma 94:235–248

    Article  Google Scholar 

  • Withers LA, King PJ (1980) A simple freezing unit and routine cryopreservation method for plant cell cultures. CryoLett 1:213–220

    Google Scholar 

  • Withers LA, Street HE (1977) The freeze preservation of cultured plant cells III. The pregrowth phase. Physiol Plant 39:171–178

    Article  Google Scholar 

  • Wright JW (1976) Introduction to forest genetics. Academic Press, London New York

    Google Scholar 

  • Wright K, Northcote DH (1972) Induced root differentiation in sycamore callus. J Cell Sci 11:319–337

    PubMed  CAS  Google Scholar 

  • Wright K, Northcote DH (1973) Differences in ploidy and degree of intercellular contact in differentiating and non-differentiating sycamore calluses. J Cell Sci 12:37–53

    PubMed  CAS  Google Scholar 

  • Yamazaki N, Fry SC, Darvill AG, Albersheim P (1983) Host-pathogen interactions XXIV. Fragments isolated from suspension-cultured sycamore cell walls inhibit the ability of the cells to incorporate [14C] leucine into proteins. Plant Physiol 72:864–869

    Article  PubMed  CAS  Google Scholar 

  • Yang SE, Street HE (1979) Studies on the growth in culture of plant cells XXIII. Isolation of nuclei and histones from cultured cells of Acer pseudoplatanus L. J Exp Bot 29:1291–1298

    Article  Google Scholar 

  • Yawney HW, Carl CM, Jr (1974) Storage requirements for sugar maple seeds. USDA For Serv Res Pap NE-298

    Google Scholar 

  • Yawney HW, Donnelly JR (1982) Rooting and overwintering sugar maple cuttings. In: Sugar maple research: sap production, processing, and marketing of maple syrup. USDA For Serv NEFES, Broomall, PA, Gen Tech Rep NE-72, pp 61–70

    Google Scholar 

  • York WS, Darvill AG, McNeil M, Stevenson TT, Albersheim P (1985) Isolation and characterization of plant cell walls and cell-wall components. Methods Enzymol 118:3–40

    Article  Google Scholar 

  • Young M (1973) Studies on the growth in culture of plant cells XVI. Nitrogen assimilation during nitrogen-limited growth of Acer pseudoplatanus L. cells in chemostat culture. J Exp Bot 24:1172–1185

    Article  CAS  Google Scholar 

  • Zrÿd JP (1976) 5-bromodeoxyuridine as an agent in the selection of sycamore cell cultures. Plant Sci Lett 6:157–161

    Article  Google Scholar 

  • Zrÿd JP (1979) Colchicine-induced resistance to antibiotic and amino-acid analogue in plant cell cultures. Experientia 35:1168–1169

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Morselli, M.F. (1989). Maple (Acer spp.). In: Bajaj, Y.P.S. (eds) Trees II. Biotechnology in Agriculture and Forestry, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61535-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61535-1_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64862-5

  • Online ISBN: 978-3-642-61535-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics