Advertisement

Arabidopsis thaliana (L.): In Vitro Production of Haploids

  • R. L. Scholl
  • K. A. Feldmann
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 12)

Abstract

Arabidopsis thaliana (L.) Heynh. is a small crucifer which grows wild in both the eastern and western hemispheres. While this plant has not been used for commercial purposes, it is well studied genetically. This is so because it possesses a very short generation time, and large populations of the species can be grown in confined areas. The biology (Napp-Zinn 1969; Kranz 1976) and genetics (Redei 1975) of A. thaliana have been reviewed. Tissue culture techniques of A. thaliana including callus culture (Yokayama and Jones 1965; Ziebur 1965; Negrutiu et al. 1978 a), suspension culture (Negrutiu et al. 1975; Lazar 1976), and shoot and root regeneration (Corcos et al. 1973; Feldmann and Marks 1986) have been well enough established to allow reliable in vitro manipulation of the species (Negrutiu et al. 1975; Negrutiu and Jacobs 1977).

Keywords

Arabidopsis Thaliana Callus Induction Induction Medium Callus Culture Anther Culture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amos JA (1977) Anther culture and regeneration studies in four Arabidopsis species. Ph D Diss, Ohio State Univ, ColumbusGoogle Scholar
  2. Amos JA, Scholl RL (1978) Induction of haploid cells from anthers of four species of Arabidopsis thaliana. Z Pflanzenphysiol 90:33 - 43Google Scholar
  3. Avetisov VA (1976) Production of haploids during in vitro culturing of Arabidopsis thaliana (L.) Heynh. anthers and isolated protoplasts. Genetika (USSR) 12: 17 - 25Google Scholar
  4. Baribault TJ (1983) Anther culture and plant regeneration of Arabidopsis thaliana. Ph D Diss, Ohio State Univ, ColumbusGoogle Scholar
  5. Christianson ML (1979) Zinc sensitivity in Phaseolus: expression in cell culture. Environ Exp Bot 19: 217 - 221CrossRefGoogle Scholar
  6. Christianson ML, Warnick DA (1983) Competence and determination in the process of in vitro shoot organogenesis. Dev Bioi 95: 288 - 293CrossRefGoogle Scholar
  7. Corcos A, Piper B, Lewis R (1973) Redifferentiation of normal Arabidopsis plants from callus culture. Arabid Inf Serv 10: 10Google Scholar
  8. Feldmann KA (1979) Chromosome stability and regenerative potential of anther and seedling callus of Arabidopsis thaliana: effect of age, race and induction medium. Master's Thesis, Univ Northern Iowa, Cedar FallsGoogle Scholar
  9. Feldmann KA, Marks MD (1986) Rapid and efficient regeneration of plants from explants of Arabidopsis thaliana. Plant Sci 47: 63 - 69CrossRefGoogle Scholar
  10. Gamborg OL, Eveleigh DE (1968) Culture methods and detection of glucanase in suspension cultures of wheat and barley. Can J Biochem 66: 417 - 421Google Scholar
  11. Gresshoff PM, Doy CH (1972) Haploid Arabidopsis thaliana callus and plants from anther culture. Aust J Bioi Sci 25: 259 - 264Google Scholar
  12. Griffing B (1975) Efficiency changes due to use of doubled-haploids in recurrent selection methods. Theor Appl Genet 46: 367 - 386Google Scholar
  13. Hageman RH, Flesher D, Wabol I, Storck DH (1961) An improved nutrient culture technique for growing corn under greenhouse conditions. Agron J 53: 175 - 180CrossRefGoogle Scholar
  14. Kao KN (1981) Plant formation from barley anther cultures with ficoll media. Z Pflanzenphysiol 103:437 -443Google Scholar
  15. Keathley DE (1981) Anther culture of Arabidopsis thaliana on stationary liquid medium. Ph D Diss, Ohio State Univ, ColumbusGoogle Scholar
  16. Keathley DE, Scholl RL (1982) Culture of Arabidopsis thaliana anthers on liquid medium. Z Pflanzenphysiol 106: 199 - 212Google Scholar
  17. Keathley DE, Scholl RL (1983) Chromosomal heterogeneity of Arabidopsis thaliana anther callus, regenerated shoots and plants. Z Pflanzenphysiol112: 247 - 255Google Scholar
  18. Kranz AR (ed) (1976) Proc 2nd Int Symp Arabidopsis research. Arabid Inf Serv 13, 227 ppGoogle Scholar
  19. Lazar MD (1976) Studies of the growth of cell suspension cultures of Arabidopsis thaliana. M Sc Thesis, Ohio State Univ, ColumbusGoogle Scholar
  20. Leutwiler LS, Haugh-Evans BR, Meyerowitz EM (1984) The DNA of Arabidopsis thaliana. Mol Gen Genet 194: 15 - 23CrossRefGoogle Scholar
  21. Lichter R (1981) Anther culture of Brassica napus in a liquid culture medium. Z Pflanzenphysiol 103: 229 - 238Google Scholar
  22. Meyerowitz EM, Pruitt RE (1985) Arabidopsis thaliana and plant molecular genetics. Science 229: 1214 - 1218Google Scholar
  23. Napp-Zinn K (1969) Arabidopsis thaliana (L.) Heynh. In: Evans LT (ed) The induction of flowering.Google Scholar
  24. Cornell Univ Press, pp 291- 304Google Scholar
  25. Negrutiu I (1976) In vitro morphogenesis in Arabidopsis thaliana. Arabid Inf Serv 13: 180 - 187Google Scholar
  26. Negrutiu I, Jacobs M (1977) Arabidopsis thaliana as a model system in somatic cell genetics. II. Cell suspension culture. Plant Sci Lett 8: 7-15Google Scholar
  27. Negrutiu I, Jacobs M (1978a) Restoration of the morphogenetic capacity in long-term callus cultures of Arabidopsis thaliana. Z Pflanzenphysiol 90: 431 - 441Google Scholar
  28. Negruti I, Jacobs M (1978b) Factors which enhance in vitro morphogenesis of Arabidopsis thaliana. Z Pflanzenphysiol 90: 423 - 430Google Scholar
  29. Negrutiu I, Beeftink F, Jacobs M (1975) Arabidopsis thaliana as a model system in somatic cell genetics. I. Cell and tissue culture. Plant Sci Lett 5:293 - 304Google Scholar
  30. Negrutiu I, Jacobs M, Cachita D (1978a) Some factors controlling in vitro morphogenesis of Arabidopsis thaliana. Z Pflanzenphysiol 86:113 -124Google Scholar
  31. Negrutiu I, Jacobs M, deGreef W (1978b) In vitro morphogenesis of Arabidopsis thaliana: the origin of the explant. Z Pflanzenphysiol 90: 363 - 372Google Scholar
  32. Redei GP (1975) Arabidopsis is a genetic tool. Annu Rev Genet 9:111-127Google Scholar
  33. Scholl RL, Amos JA (1980) Isolation of doubled-haploid plants through anther culture. Z PflanzenphysioI96: 407 - 414Google Scholar
  34. Scholl RL, Keathley DE, Baribault TJ (1981) Enhancement of root formation and fertility in shoots regenerated from anther- and seedling-derived callus culture of Arabidopsis thaliana. Z Pflanzenphysiol 104: 225 - 231Google Scholar
  35. Song CM (1974) Isoenzyme variations in Arabidopsis. Ph D Diss, Ohio State Univ, ColumbusGoogle Scholar
  36. Sunderland N, Roberts M (1977) New approach to pollen culture. Nature (London) 270: 236 - 238CrossRefGoogle Scholar
  37. Valvekens DM, Van Montagu M, Van Lisjebettens M (1988) Agrobacterium tume/aciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proc Nat! Acad Sci (US) 85: 5536 - 5540Google Scholar
  38. Xuan LT, Menczel L (1980) Improved protoplast culture and plant regeneration from protoplast derived callus in Arabidopsis thaliana. Z Pflanzenphysiol 96:77 - 80Google Scholar
  39. Yokayama K, Jones W (1965) Tissue cultures of Arabidopsis thaliana. Plant Physiol 40: 70Google Scholar
  40. Ziebur M (1965) Tissue culture. Arabid Inf Serv 2: 34 - 36Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • R. L. Scholl
    • 1
  • K. A. Feldmann
    • 2
  1. 1.Department of GeneticsThe Ohio State UniversityColumbusUSA
  2. 2.E.I. duPont de NemoursWilmingtonUSA

Personalised recommendations