Skip to main content

Part of the book series: Lecture Notes in Chemistry ((LNC,volume 67))

Summary

We analyze the PWSCF code. This code solves the self-consistent Kohn and Sham equations, obtained for a periodic solid, in the framework of density functional theory (DFT) using the local density approximation (LDA). The orbitals are expanded in a plane wave basis set and the cores are described by norm-conserving pseudopotentials. The theory and the implementation of the equations are discussed. We present three examples of applications to solids: a semiconductor, silicon; an insulator, NaCl; and a metal, aluminium. For each system, we compute the total energy, the band structure and the electronic charge density. Examples of calculations of the lattice constants and of the bulk modulus are also given. Several practical issues which were encountered in these calculations are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A copy of the code can be obtained also by sending an e-mail to dalcorsoGeldpa.epfl. ch.

    Google Scholar 

  2. P. Giannozzi, S. de Gironcoli, P. Pavone, and S. Baroni, Phys. Rev. B 43, 7231 (1991).

    Article  CAS  Google Scholar 

  3. S. de Gironcoli, S. Baroni, and R. Resta, Phys. Rev. Lett. 62, 2843 (1989).

    Google Scholar 

  4. S. Baroni, P. Giannozzi, and A. Testa, Phys. Rev. Lett. 58, 1861 (1987); ibid. 59, 2662 (1987).

    Article  Google Scholar 

  5. A. Dal Corso, R. Resta, and S. Baroni, Phys. Rev. B 47, 16252 (1993).

    Article  Google Scholar 

  6. S. de Gironcoli, S. Baroni, and R. Resta, Ferroelectrics 111, 19 (1990).

    Google Scholar 

  7. A. Dal Corso, S. Baroni, R. Resta, and S. de Gironcoli, Phys. Rev. B 47, 3588 (1993).

    Article  Google Scholar 

  8. A. Dal Corso, S. Baroni, and R. Resta, Phys. Rev. B 49, 5323 (1994).

    Article  Google Scholar 

  9. A. Dal Corso and R. Resta, Phys. Rev. B 50, 4327 (1994).

    Article  Google Scholar 

  10. P. Hohenberg and W. Kohn, Phys. Rev. 136, 864 (1964).

    Article  Google Scholar 

  11. W. Kohn and L.J. Sham, Phys. Rev. 140, 1133 (1965).

    Article  Google Scholar 

  12. W.E. Pickett, Computer Phys. Reports 9, 115 (1989).

    Article  Google Scholar 

  13. G.B. Bachelet, D.R. Hamann, and M. Schluter, Phys. Rev. B 26, 4199 (1982).

    Article  CAS  Google Scholar 

  14. J. Ihm, A. Zunger, and M. L. Cohen, J. Phys. C 12, 4409 (1979).

    Article  CAS  Google Scholar 

  15. E.R. Davidson, Computer Phys. Commun. 53, 49 (1989).

    Article  Google Scholar 

  16. U. von Barth and C.D. Gelatt, Phys. Rev. B 21, 2222 (1980).

    Article  Google Scholar 

  17. D.M. Ceperley and B.J. Alder, Phys. Rev. Lett. 45, 566 (1980); J. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).

    Google Scholar 

  18. C. Lee, D. Vanderbilt, K. Laasonen, R. Car, and M. Parrinello, Phys. Rev. B 47, 4863 (1993).

    Article  CAS  Google Scholar 

  19. D. Vanderbilt and J.D. Johannopoulos, Phys. Rev. B 27, 6296 (1983).

    Article  CAS  Google Scholar 

  20. See Chapter 4, this issue.

    Google Scholar 

  21. M. Methfessel and A.T. Paxton, Phys. Rev. B 40, 3616 (1989).

    Article  CAS  Google Scholar 

  22. D.G. Anderson, J. Assoc. Comput. Mach. 12, 547 (1965).

    Google Scholar 

  23. B.T. Smith, Matrix Eigensystem routines-EISPACK guide, Berlin, (1979).

    Google Scholar 

  24. M. Methfessel and A.T. Paxton, Phys. Rev. B 40, 3616 (1989).

    Article  CAS  Google Scholar 

  25. M.T. Yin and M.L. Cohen, Phys. Rev. B 26, 5668 (1982).

    Article  CAS  Google Scholar 

  26. F.D. Murnaghan, Proc. Nat. Acad. Sci. USA 50, 697 (1944).

    Google Scholar 

  27. M.B. Nardelli, S. Baroni and P. Giannozzi, Phys. Rev. Lett. 69, 1069 (1992).

    Article  CAS  Google Scholar 

  28. S. G. Louie, S. FVoyen and M. L. Cohen, Phys. Rev. B 26, 1738 (1982).

    Article  CAS  Google Scholar 

  29. S. FVoyen and M.L. Cohen, Phys. Rev. B 29, 3770 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dal Corso, A. (1996). A Pseudopotential Plane Waves Program (PWSCF) and some Case Studies. In: Pisani, C. (eds) Quantum-Mechanical Ab-initio Calculation of the Properties of Crystalline Materials. Lecture Notes in Chemistry, vol 67. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61478-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61478-1_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61645-0

  • Online ISBN: 978-3-642-61478-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics