Skip to main content

Role of Lactic Acid Fermentation in Bioconversion of Wastes

  • Conference paper
Lactic Acid Bacteria

Part of the book series: NATO ASI Series ((ASIH,volume 98))

Abstract

Among the biological methods for transforming organic wastes, two types of fermentation processes are important, as they allow the recovery of nutrients for use in the production of feed, fertilizers, and food. The term “fermentation” will be used in this regard in the broad sense used by Prescott & Dunn (1959): “a process in which chemical changes are brought about in an organic substrate through the action of enzymes elaborated by microorganisms.” One of those processes includes the hydrolysis (if required) of biological polymers to simple molecules, and the subsequent growth of microbial populations utilizing organic waste products as their source of energy and nutrients. As a consequence of this kind of process, products such as “single cell protein”, “microbial biomass protein”, “single cell oil”, or such metabolites as alcohol and others, associated or not with the microbial growth, can be produced. Tewari et al. (1988) evaluated acids and cellulase enzymes for the hydrolysis of lignocellulosic residues. Processes for the growth of microbial biomass are generally aerobic, and there is an extensive literature about them (Moo-Young & Gregory, 1986).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams MR, Cooke RD, Twiddy DR (1987) Fermentation parameters involved in the production of lactic acid preserved fish-glucose substrates. Int J Food Sci Technol 22: 105–114.

    Google Scholar 

  • Anonymous (1974) Part 16: Gram-positive, asporogenous, rod-shaped bacteria. In: Buchanan RE, Gibbons NE (eds) Bergey’s Manual of Determinative Bacteriology, 8th ed, Williams & Wilkins, Baltimore, MD, pp 576–598.

    Google Scholar 

  • Anonymous (1988) Silage additives - The ADAS guide to choice value and application. Farmers Weekly, Supplement, 17 February. Quoted in Brookes RM, Buckle AE (1992) Lactic acid bacteria in plant silage. In: Wood BJB (ed) The Lactic Acid Bacteria, vol 1, Elsevier Applied Science, London, UK, pp 363–386.

    Google Scholar 

  • Ashbell G, Lisker N 1987 Chemical and microbiological changes occurring in orange peels and in the seepage during ensiling. Biological Wastes 21: 213–220.

    Article  Google Scholar 

  • Axelsson LT (1993) Lactic acid bacteria; classification and physiology. In: Salminen S, von Wright A (eds) Lactic Acid Bacteria. Marcell Dekker, New York, NY, pp 1–63.

    Google Scholar 

  • Backhoff PH (1976) Some chemical changes in fish silage. J Food Technol 11: 353–363.

    Article  CAS  Google Scholar 

  • Beck T (1978) The Microbiology of Silage Fermentation. In: McCullough ME (ed) Fermentation of Silage - A Review. National Feed Ingredients Assoc, West Des Moines, IA, pp 61–116.

    Google Scholar 

  • Bolsen K, Fung D, llg H, Laytimi A, Hart R, Chain V, Nuzback L (1987) Effect of commercial inoculants on the fermentation of alfalfa, corn, forage sorghum, and triticale silages. In: Kansas State University Report, Manhattan, KS, pp 107–120.

    Google Scholar 

  • Brookes RM, Buckle AE (1992) Lactic acid bacteria in plant silage. In: Wood BJB (ed) The Lactic Acid Bacteria, vol 1, Elsevier Applied Science, London, UK, pp 363–386.

    Chapter  Google Scholar 

  • Cooke RD, Twiddy DR, Reilly PJA (1987) Lactic acid fermentation as a low-cost means of food preservation in tropical counties. FEMS Microbiological Review 46: 369–379.

    Article  Google Scholar 

  • Dahiya RS, Speck ML (1968) Hydrogen peroxide formation by lactobacilli and its effect on Staphylococcus aureus. J Dairy Sci 51: 1568–1572.

    Article  PubMed  CAS  Google Scholar 

  • Deibel RH (1960) Artinine as an energy source for the growth of Streptococcus faecalis. In: Bacteriol Proc, Society of American Bacteriologists, pp 163–164.

    Google Scholar 

  • Deibel RH, Niven CF (1960) Comparative study of Gaffkya homari, Aerococcus viridans, tetra-forming cocci from meat curing brines and the genus Pediococcus. J Bacteriol 79: 175–180.

    Article  PubMed  CAS  Google Scholar 

  • Disney JG, Tatterson IN, Olley J (1977) Recent development in fish silage. In: Proceedings of the International Conference on the Handling, Processing and Marketing of Tropical Fish, London, Tropical Products Institute, London, UK, pp 223–240.

    Google Scholar 

  • Done DL (1986) Silage inoculants. A review of experimental work. Res Devel Agric 3 (2): 83–87.

    Google Scholar 

  • Dong FM, Fairgrieve WT, Skonberg DI, Rasco BA (1993) Preparation and nutrient analyses of lactic acid bacterial ensiled salmon viscera. Aquaculture, 109: 351–366.

    Article  CAS  Google Scholar 

  • Espe M, Haaland H, Njaa LR, Raa J (1992a) Growth of young rats on diets based on fish silage with different degrees of hydrolysis. Food Chem 44: 195–200.

    Article  Google Scholar 

  • Espe M, Haaland H, Njaa LR (1992b) Autolysed fish silage as a feed ingredient for atlantic salmon (Salmo salai). Comp Biochem Physiol 103(A) V2: 369–372.

    Article  Google Scholar 

  • Fagbenro O, Jauncey K (1993) Chemical and nutritional quality of stored fermented fish (tilapia) silage. Food Chem 48: 331–335

    Article  CAS  Google Scholar 

  • Fagbenro O, Jauncey K (1994) Growth and protein utilization by juvenile catfish, Clarias gariepinus fed most diets containing autolysed protein from stored lactic acid fermented fish silage. Bioresource Technol 48 (1): 43–48.

    Article  CAS  Google Scholar 

  • Forney LJ, Reddy CA (1977) Fermentative conversion of potato- processing wastes into a crude protein feed supplement by lactobacilli. Develop Ind Microbiol 18: 135–143.

    Google Scholar 

  • Garvie El (1986) Genus Pediococcus Claussen 1903, 68. In: Sneath PHA, Nair NS, Sharpe ME, Holt JG (eds) Bergey’s Manual of Systematic Bacteriology, vol 2, Williams & Wilkins, Baltimore, MD, pp 1075–1079. Quoted in Levin RE (1994) Lactic acid and propionic acid fermentations of fish hydrolysates. In: Martin AM (ed) Fisheries Processing. Biotechnological Applications, Chapman & Hall, London, UK, pp 273–310.

    Google Scholar 

  • Gildberg A, Espejo-Hermes J, Magno-Orejano F (1984) Acceleration of autolysis during fish sauce fermentation by adding acid and reducing the salt content. J Sci Food Agric 35: 1363–1369.

    Article  CAS  Google Scholar 

  • Green S, Wiseman J, Cole DJA (1988) Examination of stability, and its effect on the nutritive value, of fish silage in diets for growing pigs. Animal Feed Science and Technol 21: 43–56.

    Article  Google Scholar 

  • Haard NF, Kariel N, Herzberg G, Feltham LAW, Winter K (1985) Stabilisation of protein and oil in fish silage for use as a ruminant feed supplement. J Sci Food Agric 36: 229–241.

    Article  CAS  Google Scholar 

  • Hardy WR Shearer DK, Stone EF, Wieg HD (1983) Fish silage in aquaculture diets. J World Maricult Soc 14: 695–703.

    Google Scholar 

  • Hardy RW, Masumoto T (1990) Specifications for marine by-products in aquaculture feeds. In: Proceedings Alaska Fish By-Products Conference, Alaska Sea Grant College Program, University of Alaska, Fairbanks, AL, Report No. 90–07, pp 109–120.

    Google Scholar 

  • Hassan TE, Heath JL (1986) Biological fermentation of fish waste for potential use in animal and poultry feeds. Agricultural Wastes 15: 1–15.

    Article  Google Scholar 

  • Heras H, McLeod CA, Ackman RG (1994) Atlantic dogfish silage vs herring silage in diets for atlantic salmon (Salmo salar): growth and sensory evaluation of fillets. Aquaculture 125: 93–106.

    Article  Google Scholar 

  • Hyller GM, Peers DG, Morrison R, Parry DA, Woods WP (1976) Evaluation of a farm use of de-oiled herring silage as a protein feed for growing pigs. In: Proc Torry Res Station, Part I V, Ministry of Agriculture, Fisheries and Food, Aberdeen, U.K.

    Google Scholar 

  • Ingram M, Ottoway FJH, Coppock JBM (1956) The preservative action of acid substances in food. Chemistry and Industry 42: 1154–1163.

    Google Scholar 

  • Jackson AJ, Kerr AK, Cowey CB (1984) Fish silages dietary ingredient for salmon. I Nutritional and storage characteristics. Aquaculture 38: 211–220.

    Article  CAS  Google Scholar 

  • Jangaard MP (1987) Fish silage: A review and some recent developments. In: Fish Silage Workshop, Church Point, Nova Scotia, DFO Canada, Halifax, NS, pp 8–33.

    Google Scholar 

  • Keller AK, Gerhardt P (1975) Continuous lactic acid fermentation of whey to produce a ruminant feed supplement high in crude protein. Biotechnol Bioeng 17: 997–1018.

    Article  CAS  Google Scholar 

  • Knochel S (1981) Mikrobiell fermentering af fisk ved hjelp av naturligt forekommende laktobaciller. Hovedoppgave, Fiskeriministeriets Forsogslaboratorium, Kovenhavn Univ. Quoted in Raa J, Gildberg A, Strom T (1983) Silage production: Theory and practice. In: Ledward DA, Taylor AJ, Lawrie RA (eds) Upgrading Waste for Feeds and Food, Butterworths, London, UK, pp 117–132.

    Google Scholar 

  • Kompiang IP, Yushadi, Creswell DC (1980) Microbial fish silage: Chemical composition, fermentation characteristics and nutritional value. In: Disney JG, James D (eds) Fish Silage Production and its Use, Proc IPFC Workshop on Fish Silage, FAO Fish Rep 230, Food and Agriculture Organization of the United Nations, Rome, pp 38–43.

    Google Scholar 

  • Krogdahl A (1985) Fish viscera silage as a protein source for poultry. I Experiments with layer-type chickens and hens. Acta Agric Scand 35: 3–23.

    Article  Google Scholar 

  • Lassen TM, Hillemann G, Fors F (1990) Fisk och slaktavfall konserverade mad mjolksyrabakterier och enzympreparaten Pelzyme och Marilzil i foder till palsdjur, NJF Seminarium, 185 (in Swedish). Quoted in Lindgren S (1992) Storage of waste products for animal feed. In: Wood BJB (ed) The Lactic Acid Bacteria, vol 1, Elsevier Applied Science, London, UK, pp 387–407.

    Google Scholar 

  • Le Dividish J, Seve B, Geoffroy F (1976) Banana silage in animal feeding. Annales Zootechnology 25: 313–323. Quoted in Lindgren S (1992) Storage of waste products for animal feed. In: Wood BJB (ed) The Lactic Acid Bacteria, vol 1, Elsevier Applied Science, London, UK, pp 387–407.

    Google Scholar 

  • Levin RE (1994) Lactic acid and propionic acid fermentations of fish hydrolysates. In: Martin AM (ed) Fisheries Processing. Biotechnological Applications, Chapman & Hall, London, UK, pp 273–310.

    Google Scholar 

  • Lindgren S (1992) Storage of waste products for animal feed. In: Wood BJB (ed) The Lactic Acid Bacteria, vol 1, Elsevier Applied Science, London, UK, pp 387–407.

    Chapter  Google Scholar 

  • Lindgren SE, Clevstrom G (1978a) Antibacterial activity of lactic acid bacteria. 1. Activity of fish silage, a cereal starter and isolated organisms. Swedish J Agri Res 8: 61–66.

    CAS  Google Scholar 

  • Lindgren SE, Clevstrom G (1978b) Antibacterial activity of fish silage. Swedish J Agri Res 8: 62–73.

    Google Scholar 

  • Lindgren SE, Pleje M (1983) Silage fermentation of fish or fish waste products with lactic acid bacteria. J Food Agric 34: 1057–1067.

    Article  Google Scholar 

  • Litchfield JH (1987) Microbiological and enzymatic treatments for utilizing agricultural and food processing wastes. Food Biotechnol 1: 29–57.

    Article  CAS  Google Scholar 

  • Mackie IM (1971) Fermented fish products. FAO Fisheries Report No 100. Food and Agriculture Organization of the United Nations, Rome, 54 pp.

    Google Scholar 

  • Marshall VME, Law BA (1984) The physiology and growth of dairy lactic- acid bacteria. In: Davies FL, Law BA (eds) Advances in the Microbiology and Biochemistry of Cheese and Fermented Milk, Elsevier Appl Sci Publ, London, UK, pp 67–98.

    Google Scholar 

  • Martin AM (ed) (1991) Bioconversion of Waste Materials to Industrial Products. Elsevier Science Publishers, London, UK.

    Google Scholar 

  • Martin AM (ed) (1994) Fisheries Processing, Biotechnological Applications. Chapman & Hall, London, UK.

    Google Scholar 

  • Martin AM, Bemister PL (1994) Use of peat extract in the ensiling of fisheries wastes. Waste Manage Res 12: 467–479.

    CAS  Google Scholar 

  • Martin AM, Patel TR (1991) Bioconversion of wastes from marine organisms. In: Martin AM (ed) Bioconversion of Waste Materials to Industrial Products, Elsevier Applied Science, London, UK, pp 417–440.

    Google Scholar 

  • McCullough ME (ed) (1978) Fermentation of Silage. A Review. National Feed Ingredients Assoc, West Des Moines, Iowa.

    Google Scholar 

  • McDonald P (1981) The Biochemistry of Silage, John Wiley & Sons, Chichester, UK.

    Google Scholar 

  • McDonald P, Henderson AR, Heron SJE (1991) The Biochemistry of Silage. Chalcombe Publications, Marlow, UK, pp 19–47.

    Google Scholar 

  • Mookherjee BD (1976) Lactic acid fermentation. In: Peterson MS, Johnson AH (eds) Encyclopedia of Food Science, AVI, Westport, CT, pp 443–447.

    Google Scholar 

  • Moon NJ (1981a) Development of microbial populations in fermented wastes from frozen vegetable processing. J Food Protection 44: 288–193.

    Google Scholar 

  • Moon NJ (1981 b) Effect of inoculation of vegetable processing wastes with Lactobacillus plantarum on silage fermentation. J Sci Food Agric 32: 675–683.

    Google Scholar 

  • Moo-Young M, Gregory KF (eds) (1986) Microbial Biomass Protein. Elsevier Applied Science Publishers, London, UK.

    Google Scholar 

  • Mossel DAA (1971) Physiological and metabolic attributes of microbial groups associated with foods. J Applied Bacteriol 34: 95–118.

    CAS  Google Scholar 

  • Nash MJ (1985) Crop Conservation and Storage. Pergamon Press, Oxford, UK.

    Google Scholar 

  • Nicholson JWG, Johnson DA (1991) Herring silage as a protein supplement for young cattle. Can J Anim Sci 71: 1187–1196.

    Article  Google Scholar 

  • Nilsson R, Rydin C (1963) Acta Chem Scand 17:174. Quoted in Raa J, Gildberg A, Strom T (1983) Silage production: Theory and practice. In: Ledward DA, Taylor AJ, Lawrie RA (eds) Upgrading Waste for Feeds and Food, Butterworths, London, UK, pp 117–132.

    Google Scholar 

  • Nilsson R, Rydin C (1965) A new method of ensiling foodstuff and feedstuff of vegetable and animal origin. Enzymologia 29: 126–142.

    PubMed  CAS  Google Scholar 

  • Ologhobo AD, Balogum AM, Bolarinwa BB (1988) The replacement value of fish silage for fish meal in practical broiler rations. Biol Wastes 25: 117–125.

    Article  Google Scholar 

  • Orla-Jensen SH (1919) The lactic acid bacteria. Mem Acad Royal Soc Denmark Ser 8 (5): 81–197.

    Google Scholar 

  • Owens JD, Mendoza LS (1985) Enzymatically hydrolysed and bacterially fermented fishery products. J Food Technol 20: 273–293.

    Article  CAS  Google Scholar 

  • PedersonCS (1978) Food Fermentations. In: Peterson MS, Johnson AH (eds) Encyclopedia of Food Science, AVI, Westport, CT, pp 311–314.

    Google Scholar 

  • Petersen H (1953) Acid preservation of fish and fish offal. FAO Fish Bull 6 (1–2): 18–26.

    Google Scholar 

  • Prescott SM, Dunn CG (1959) Industrial Microbiology ( 3rd ed ), McGraw- Hill, New York, NY.

    Google Scholar 

  • Price RJ, Lee JS (1970) Inhibition of Pseudomonas species by hydrogen peroxide producing Lactobacilli. J Milk Food Technol 33: 13–18.

    CAS  Google Scholar 

  • Raa J, Gildberg A (1982) Fish silage: A review. CRC Crit Rev Food Sci Nutr 16: 383–419.

    Article  CAS  Google Scholar 

  • Raa J, Gildberg A, Strom T (1983) Silage production: Theory and practice. In: Ledward DA, Taylor AJ, Lawrie RA (eds) Upgrading Waste for Feeds and Food, Butterworths, London, UK, pp 117–132.

    Google Scholar 

  • Ray B (1992) Cells of lactic acid bacteria as food biopreservatives. In: Ray B, Daeschel M (eds) Food Biopreservatives of Microbial Origin. CRC Press, Boca Raton, FL, pp 81–101.

    Google Scholar 

  • Roa PD (1965) Ensilage of fish by microbial fermentation. Fishing News Int 4: 283–286.

    Google Scholar 

  • Rungruangsak K, Utne F (1981) Effect of different acidified wet feeds on protease activities in the digestive tract and on growth rate of rainbow trout (Salmo gairdneri Richardson). Aquaculture 22: 67–79.

    Article  CAS  Google Scholar 

  • Samuel WA, Lee YY, Anthony WB (1980) Lactic acid fermentation of crude sorghum extract. Biotechnol Bioeng 22: 757–777.

    Article  CAS  Google Scholar 

  • Sander JE, Cai T, Barnhart HM Jr (1995) Evaluation of amino acids, fatty acids, protein, fat, and ash in poultry carcasses fermented with Lactobacillus bacteria. J Food Agric Chem 43: 791–794.

    Article  CAS  Google Scholar 

  • Setälä J (1988-1989) Enzymes in grass silage production. Food Biotechnology 2: 211–225.

    Google Scholar 

  • Stanton WR, Yeoh QL (1977) Low fermentation method for conserving trash fish waste under SE Asian conditions. In: Proceedings of the Conference on the Handling, Processing and Marketing of Tropical Fish, London, Tropical Products Institute, London, UK, pp 227–282.

    Google Scholar 

  • Stone EF, Hardy RW (1986) Nutritional value of acid established silage and liquified fish protein. J Sci Food Agric 37: 797–803.

    Article  CAS  Google Scholar 

  • Szakacs G, Radvanszky B, Gyenes J (1988) Large-scale production of animal feed from meat industry by-products by lactic acid fermentation. In: Biotechnology and Food Industry, Proc Int Symposium, Budapest, pp 609–615.

    Google Scholar 

  • Tatterson Nl, Windsor LM (1974) Fish Silage. J Sci Food Agric 25: 369–379.

    Article  CAS  Google Scholar 

  • Tewari HK, Marwaha SS, Kennedy JF, Singh L (1988) Evaluation of acids and cellulase enzyme for the effective hydrolysis of agricultural lignocellulosic residues. J Chem Technol Biotechnol 41: 261–275.

    Article  CAS  Google Scholar 

  • Twiddy DR, Cross SJ, Cooke RD (1987) Parameters involved in the production of lactic acid preserved fish - starchy substrate combinations. Intern J Food Sci Technol 22: 115–121.

    Article  Google Scholar 

  • Vandevoorde L, Vande Woestyne M, Bruyneel B, Christiaens H, Verstraete W (1992) Critical factors governing the competitive behaviour of lactic acid bacteria in mixed cultures. In: Wood BJB (ed) The Lactic Acid Bacteria, vol 1, Elsevier Applied Science, London, UK, pp 447–475.

    Chapter  Google Scholar 

  • Van Wyk HJ, Heydenrych MSC (1985) The production of naturally fermented fish silage using various Lactobacilli and different carbohydrate sources. J Sci Food Agric 36: 1093–1103.

    Article  Google Scholar 

  • WatrousWL (1978) Lactic acid fermentation. In: Peterson MS, Johnson AH (eds) Encyclopedia of Food Science, AVI, Westport, CT, pp 443–445.

    Google Scholar 

  • Watson SJ, Nash MJ (1960) The Conservation of Grass and Forage Crops, Oliver & Boyd, Edinburgh, UK, pp 299–300.

    Google Scholar 

  • Wee KL, Kerdchuen N, Edwards P (1986) Use of waste grown tilapia silage as feed for Clarias batrachus L. J Aqua Trop 1: 127–137.

    Google Scholar 

  • Whittenbury R (1965) Microbiology of grass silage. Proc Biochem 3: 27–31.

    Google Scholar 

  • Wood JF, Carper BS, Nicolaides L (1985) Preparation and evaluation of diets containing fish silage, cooked fish preserved formic acid and low temperature dried fish meal as protein source for mirror carp Cyprinus carpio. Aquaculture 44: 27–40.

    Article  CAS  Google Scholar 

  • Woolford MK (1984) The Silage Fermentation. Marcel Dekker, New York, NY, USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Martin, A.M. (1996). Role of Lactic Acid Fermentation in Bioconversion of Wastes. In: Faruk Bozoğlu, T., Ray, B. (eds) Lactic Acid Bacteria. NATO ASI Series, vol 98. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61462-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61462-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64850-2

  • Online ISBN: 978-3-642-61462-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics