Skip to main content

Quantification of Heat Treatment-Induced Transgene Silencing Using Single Cells of Nicotiana tabacum

  • Conference paper
  • 142 Accesses

Abstract

The growth of transgenic phosphinothricin-resistant single cell cultures under unusually high temperatures (37 °C) led to the loss of herbicide resistance in more than 90% of the cells (Walter et al. 1992). A strong reduction of herbicide resistance could be observed in transgenic tobacco plants after an incubation for 1 to 10 days at 37 °C (Neumann et al. 1996). In this study we tried to quantify the phenomenon analysing the reduction of the transgene encoded phenotype in single cells of different tobacco lines. The transgenic lines used carried transgenes with different promoters, coding regions and terminator sequences. In the single cell system, a reversible loss of the transgene encoded phenotype was detectable during the heat treatment. After the reduction of the growth temperature to 24 °C, the number of cells which lost the transgene encoded phenotype decreased, reaching the initial level after approximately 6 days. On the single cell level, evidence for DNA methylation associated with the phenomenon could not be found by in vivo incubation of heat-treated plants with 5-azacytidine, a compound preventing DNA methylation. Transient expression of a gus A gene transferred to protoplasts of transgenic plants was not disturbed by a heat treatment of cells, while the integrated transgenes were still inactivated in the same experiment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • De Carvalho F, Gheysen G, Kushnir S, Van Montagu M, Inzc D, Castrcsana C (1992) Suppression of ß-1,3-glucanase transgene expression in homozygous plants. EMBO I 11 /7: 2595–2602

    Google Scholar 

  • Favell RB (1994) Inactivation of gene expression in plants as a consequence of specific sequence duplication. Proc Natl Acad Sci USA 91: 3490–3496

    Article  Google Scholar 

  • Gelvin SB, Karcher SJ, DiRita VJ (1983) Methylation of the T-DNA in Agrobacterium tumefaciens and in several crown gall tumors. Nucleic Acids Res 11: 159–174

    Article  CAS  Google Scholar 

  • Goring DR, Thomson L, Rothstein SJ (1991) Transformation of a partial nopaline synthase gene into tobacco suppresses the expression of a resident wild-type gene. Proc Natl Acad Sci USA 88: 1770–1774

    Article  CAS  Google Scholar 

  • Jorgensen R, Synder C, Jones JDG (1987) T-DNA is organized predominantly in inverted repeat structures in plants transformed with Agrobacterium tumefaciens C58 derívates. Mol Gen Genet 207: 471–477

    Article  CAS  Google Scholar 

  • Jorgensen R (1990) Altered gene expression in plants due to trans interactions between homologous genes. TIBTECH 8: 340–344

    CAS  Google Scholar 

  • Jorgensen R (1992) Silencing of plant genes by homologous transgenes. AgBiotech News Inform 4: 265N–273

    Google Scholar 

  • Hart CM, Fischer B, Neuhaus J-M, Meins l:J (1992) Regulated inactivation of homologous gene expression in Nicotiana sylvestris plants containing a defence-related tobacco chitinase gene. Mol Gen Genet 235: 179–188

    Google Scholar 

  • Hobbs S, Warkcntin TD, DeLong CMO (1993) Transgene copy number can be postively or negatively associated with transgene expression. Plant Mol Biol 21: 17–26

    Article  CAS  Google Scholar 

  • Kooter JM, Mol NM (1993) Trans-inactivation of gene expression in plants. Curr Opin Biotechnol 4: 166–171

    Google Scholar 

  • Lagrimini LM, Bedford S, Rothstein S (1990) Peroxidase-induced wilting in transgenic tobacco plants. Plant Cell 2: 7–18

    Article  CAS  Google Scholar 

  • Linn F, Heidmann I, Saedler H, Meyer P (1990) Epigenetic changes in the expression of the maize Al gene in Petunia hybrida: role of numbers of integrated gene copies and state of methylation. Mol Gen Genet 222: 329–336

    Article  CAS  Google Scholar 

  • Matzke MA, Primig M, Trnovsky J, Matzke AJM (1989) Reversible methylation and inactivation of marker genes in sequentially transformed tobacco plants. EMBO J 8 /3: 643–649

    CAS  Google Scholar 

  • Matzke M, Matzke AJM (1990) Gene interactions and epigenic variation in transgenic plants. Dev Genet 11: 214–223

    Article  CAS  Google Scholar 

  • Matzke M, Matzke AJM (1991) Differential inactivation and methylation of a transgene in plants by two suppressor loci containing homologous sequences. Plant Mol Biol 16: 821–830

    Article  CAS  Google Scholar 

  • Meyer P, Heidmann I, Forkmann G, Saedler H (1987) A new petunia flower colour generated by transformation of a mutant with a maize gene. Nature 330: 677–678

    Article  CAS  Google Scholar 

  • Meyer P, Iinn F, Heidmann I, Meyer zu Altenschildesche H, Niedenhof I, Saedler H (1992) Endogenous and environmental factors influence 35S promotor methylation of a maize Al gene construct in transgenic petunia and its colour phenotype. Mol Gen Genet 231: 345–352

    Article  CAS  Google Scholar 

  • Mol JNM, van der Krol AR, van Tunen AJ, van Blokland R, de Lange P, Stuitje AR (1990) Regulation of plant gene expression by antisense RNA. FEBS Lett 268: 427–430

    Article  CAS  Google Scholar 

  • Mol JNM, van Blokland R, Kooter J (1991) More about co-suppression. TIBTECH 9: 182–183

    Google Scholar 

  • Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2: 279–289

    Article  CAS  Google Scholar 

  • Neuhaus J-M, Ahl-Goy P, Hinz U, Flores S, Meins FJ (1991) High level expression of a tobacco chitinase gene in Nicotiana sylvestris. Susceptibility of transgenic plants to Cercospora nicotianae infection. Plant Mol Biol 16: 141–150

    Article  CAS  Google Scholar 

  • Neumann K, Dröge-User W, Löhne S, Broer I (1996) The heat induced loss of transgene activity detected and analysed in several transgenic Nicoliana tabacum lines. Proceedings of the Biosafety Workshop, Mainz ( 1994 ) Springer, Berlin Heidelberg New York

    Google Scholar 

  • Ottaviani M-P, Smits T, Hänisch ten Cate CH (1993) Differential methylation and ex¬pression of the ß-glucuronidase and neomycin phosphotransferase genes in transgenic plants of potato cv. Bintje. Plant Sci 88: 73–81

    Google Scholar 

  • Renckens S, de Greve H, Van Montagu M, Hernalsteens JP (1992) Petunia plants escape from negative selection against a transgene by silencing the foreign DNA via methylation. Mol Gen Genet 233: 53–64

    Google Scholar 

  • Smith CJS, Watson CF, Bird CR, Ray J, Schuch W, Grierson D (1990) Expression of a truncated tomato polygalacturonase gene inhibits expression of the endogenous gene in transgenic plants. Mol Gen Genet 224: 477–481

    Article  CAS  Google Scholar 

  • Van der Krol AR, Mur LA, Beld M, Mol JNM, Stuitje AR (1990) Flavonoid genes in Petunia: addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell 2: 291–299

    Article  Google Scholar 

  • Walter C, Broer I, HiUemann D, Pühler A (1992) High frequency, heat treatment-induced inactivation of the phosphinothricin resistance gene in transgenic single cell suspension cultures of Medicago sativa. Mol Gen Genet 235: 189–196

    Article  CAS  Google Scholar 

  • Wohlleben W, Arnold W, Broer I, Hillemann D. Strauch E, Pühler A (1988) Nucleotide sequence of the Phosphinothricin-N-acetyltransfcrasc gene from Streptomyces viridochromogenes Tü 494 and its expression in Nicotiana tabacum. Gene 70: 25–37

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Köhne, S., Neumann, K., Dröge-Laser, W., Broer, I. (1996). Quantification of Heat Treatment-Induced Transgene Silencing Using Single Cells of Nicotiana tabacum . In: Schmidt, E.R., Hankeln, T. (eds) Transgenic Organisms and Biosafety. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61460-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61460-6_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61077-9

  • Online ISBN: 978-3-642-61460-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics