Skip to main content

Ökologie mikrobieller Biofilme

  • Chapter
Ökologie der Abwasserorganismen

Zusammenfassung

Die Untersuchung mikrobieller Biofilme begann vor 50–80 Jahren mit den einführenden Arbeiten von Söhngen, Cholodny, Henrici und ZoBell. Dort konnte gezeigt werden, daß die Gegenwart von Oberflächen bakterielle Prozesse beeinflußt. Die Entwicklung von Biofilmen auf Glasobjektträgern wurde mit Hilfe der Lichtmikroskopie beobachtet. Die weitere wissenschaftliche Erforschung mikrobieller Biofilme verlief dann sehr langsam. Erst Ende der 60er bzw. 70er Jahre wurde durch die Arbeiten von Stotzky und Mitarbeitern in Böden und von Marshall und Mitarbeitern im Wasser die Bedeutung mikrobieller Besiedlung von Oberflächen deutlich. Diese Untersuchungen waren der Ausgangspunkt für das intensive Studium der Anheftung von Mikroorganismen an Oberflächen und der Prozesse, die letztlich zur Bildung komplexer Biofilme führen. Mikrobielle Biofilme gewannen zunehmend Beachtung in der Forschung.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Characklis WG, Wilderer PA (1989) Structure and function of biofilms. John Wiley & Sons, Chichester

    Google Scholar 

  2. Characklis WG, Marshall KC (1990) Biofilms. John Wiley & Sons, Inc, New York

    Google Scholar 

  3. Flemming H-C, Geesey GG (1991) Biofouling and biocorrosion in industrial water systems. Springer, Berlin

    Google Scholar 

  4. Melo LF, Bott TR, Fletcher M, Capdeville B (1992) Biofilms - science and technology. Kluwer Academic Publishers, Dordrecht Boston London

    Google Scholar 

  5. Denyer SP, Gorman SP, Sussman M (1993) Microbial biofilms: formation and control. Blackwell Scientific Publications, Oxford (Society for Applied Bacteriology Technical Series, No 30)

    Google Scholar 

  6. Geesey GG, Lewandowski Z, Flemming H-C (1994) Biofouling and biocorrosion in industrial water systems. Lewis Publishers, Boca Raton Ann Arbor London Tokyo

    Google Scholar 

  7. Wahl M (1989) Marine epibiosis. I. Fouling and antifouling: some basic aspects. Mar Ecol Prog Ser 58:175–189

    Article  Google Scholar 

  8. Weise W, Rheinheimer G (1978) Scanning electron microscopy and epifluorescence investigations of bacterial colonization of marine sand sediments. Microb Ecol 4:175–188

    Article  Google Scholar 

  9. Meadows PS, Anderson JG (1966) Microorganisms attached to marine and freshwater grains. Nature 198:610–611

    Article  Google Scholar 

  10. DeFlaun MF, Mayer LM (1983) Relationships between bacteria and grain surfaces in intertidal sediments. Limnol Oceanogr 28:873–881

    Article  Google Scholar 

  11. Fletcher M, Marshall KC (1982) Are solid surfaces of ecological significance to aquatic bacteria? In: Marshall KC (ed) Advances in microbial ecology, Vol 6. Plenum Press, New York, pp 199–236

    Google Scholar 

  12. Manz W, Szewzyk U, Ericsson P, Amann R, Schleifer K-H, Stenström T-A (1993) In situ identification of bacteria in dringing water and adjoining biofilms by hybridzation with 16S and 23S rRNA-directed fluorescent oligonucleotide probes. Appl Environ Microbiol 59:2293–2298

    CAS  Google Scholar 

  13. Morrison SJ, King JD, Bobbie RJ, Bechthold RE, White DC (1977) Evidence for microfloral succession on allochthonous plant litter in Apalachicola Bay, Florida, USA. Mar Biol 41:229–240

    Article  CAS  Google Scholar 

  14. Vandevivere P, Kirchman DL (1993) Attachment stimulates exopolysaccharide synthesis by a bacterium. Appl Environ Microbiol 59:3280–3286

    CAS  Google Scholar 

  15. Lock MA (1993) Attached microbial communities in rivers. In: Ford TE (ed) Aquatic Microbiology. An Ecological Approach. Blackwell Scientific Publications, Oxford, pp 113–138

    Google Scholar 

  16. Robinson RW, Akin DE, Nordstedt RA, Thomas MV, Aldrich HC (1984) Light and electron microscopic examinations of methane-producing biofilms from anaerobic fixed-bed reactors. Appl Environ Microbiol 48:127–136

    CAS  Google Scholar 

  17. Stoodley P, de Beer D, Lewandowski Z (1994) Liquid flow in biofilm systems. Appl Environ Microbiol 60:2711–2716

    CAS  Google Scholar 

  18. Lawrence JR, Wolfaardt GM, Korber DR (1994) Determination of diffusion coefficients in biofilms by confocal laser microscopy. Appl Environ Microbiol 60:1166–1173

    CAS  Google Scholar 

  19. Decho AW (1990) Microbial exopolymer secretions in ocean environments: their role(s) in food webs and marine processes. Oceanogr Mar Biol A Rev 28:73–153

    Google Scholar 

  20. Eighmy TT, Maratea D, Bishop PL (1983) Electron microscopic examination of wastewater biofilm formation and structural components. Appl Environ Microbiol 45: 1921–1931

    CAS  Google Scholar 

  21. Boyle CD, Reade AE (1983) Characterization of two extracellular polysaccharides from marine bacteria. Appl Environ Microbiol 46:392 - 399

    CAS  Google Scholar 

  22. Lhevallier MW, Cawthon CD, Lee RG (1988) Inactivation of biofilm bacteria. Appl Environ Microbiol 54:2492–2499

    Google Scholar 

  23. Freeman C, Lock MA (1992) Recalcitrant high-molecular-weight material, an inhibitor of microbial metabolism in river biofilms. Appl Environ Microbiol 58:2030–2033

    CAS  Google Scholar 

  24. Yu FP, McFeters GA (1994) Physiological responses of bacteria in biofilms to disinfection. Appl Environ Microbiol 60:2462–2466

    CAS  Google Scholar 

  25. Shaw JC, Bramhill B, Wardlaw NC, Costerton JW (1985) Bacterial biofouling in a model core system. Appl Environ Microbiol 49:693–701

    CAS  Google Scholar 

  26. Geesey GG, Jang L, Jolley JG, Hankins MR, Iwaoka T, Griffiths PR (1988) Binding of metal ions by extracellular polymers of biofilm bacteria. Water Sci Technol 20:161–165

    CAS  Google Scholar 

  27. Ferris FG, Schultze S, Witten TC, Fyfe WAS, Beveridge TJ (1989) Metal interactions with microbial biofilms in acidic and neutral environments. Appl Environ Microbiol 55:1249–1257

    CAS  Google Scholar 

  28. Harvey M, Forsberg CW, Beveridge TJ, Pos J, Ogilvie JR (1984) Methanogenic activity and structural characteristics of microbial biofilm on a needle-punched polyester support. Appl Environ Microbiol 48:633–638

    CAS  Google Scholar 

  29. Sly LI, Hodgkinson MC, Arunpairojana V (1990) Deposition of manganese in a drinking water distribution system. Appl Environ Microbiol 56:628–639

    CAS  Google Scholar 

  30. Konhauser KO, Schultze-Lam S, Ferris FG, Fyfe WAS, Longstaffe FJ. Beveridge TJ (1994) Mineral precipitation by epilithic biofilms in the Speed River, Ontario, Canada. Appl Environ Microbiol 60:549 - 553

    CAS  Google Scholar 

  31. Cammen LM (1980) The significance of microbial carbon in the nutrient of the deposit feeding polychaete Nereis succinea. Mar Biol 61:9–20

    Article  CAS  Google Scholar 

  32. Moriarty DJW, Hayward AC (1982) Ultrastructure of bacteria and the proportion of Gram- negative bacteria in marine sediments. Microb Ecol 8:1–14

    Article  Google Scholar 

  33. Mayer LM (1989) The nature and determination of non-living sedimentary organic matter as a food source for deposit feeders. In: Bowman MJ, Barber RT, Mooers CNK, Raven JA (eds) Lecture notes on coastal and estuarine studies, Vol 31, Ecology of marine deposit feeders. Springer, New York, pp 98–111

    Google Scholar 

  34. Bernhard JM, Bowser SS (1992) Bacterial biofilms as a trophic resource for certain benthic foraminifera. Mar Ecol Prog Ser 83:263–272

    Article  Google Scholar 

  35. Meyer-Reil L-A (1994) Microbial life in sedimentary biofilms - the challenge to microbial ecologists. Mar Ecol Prog Ser 112:303 - 311

    Article  Google Scholar 

  36. Marszalek DS, Gerchakov SM, Udey LR (1979) Influence of substrate composition on marine microfouling. Appl Environ Microbiol 38:987–995

    CAS  Google Scholar 

  37. Maulich JH (1986) Colonization of bare rock surfaces by microflora in a rocky intertidal habitat. Mar Ecol Prog Ser 32:91–96

    Article  Google Scholar 

  38. Borum J (1985) Development of epiphytic communities on eelgrass(Zostera marina) along a nutrient gradient in a Danish estuary. Mar Biol 87:211–218

    Article  Google Scholar 

  39. Hollohan BT, Dabinett PE, Gow JA (1986) Bacterial succession during biodégradation of the kelp Alaria esculenta (L) Greville. Can J Microbiol 32:505–512

    Article  Google Scholar 

  40. Kepkay PE, Schwinghamer P, Willar T, Bowen AJ (1986) Metabolism and metal binding by surface-colonizing bacteria: results of microgradient measurements. Appl Environ Microbiol 51:163–170

    CAS  Google Scholar 

  41. Nagasawa S, Simidu U, Nemoto T (1985) Scanning electron microscopy investigation of bacterial colonization of the marine copepodAcartia clausi. Mar Biol 87:61–66

    Article  Google Scholar 

  42. Davidson AM, Fry JC (1987) A mathematical model for the growth of bacterial micro- colonies on marine sediment. Microb Ecol 13:31–45

    Article  Google Scholar 

  43. Meyer-Reil L-A (1993) Mikrobielle Besiedlung und Produktion. In: Meyer-Reil L-A Köster (eds) Mikrobiologie des Meeresbodens. Gustav Fischer Verlag Jena, pp 38–81

    Google Scholar 

  44. Pedersen K (1982 a) Method for studying microbial biofilms in flowing water systems. Appi Environ Microbiol 43:6–13

    CAS  Google Scholar 

  45. Pedersen K (1982b) Factors regulating microbial biofilm development in a system with slowly flowing seawater. Appl Environ Microbiol 44:1196–1204

    CAS  Google Scholar 

  46. Wolfaardt GM, Lawrence JR, Robarts RD, Caldwell SJ, Caldwell DE (1994) Multicellular organization in a degradative biofilm community. Appi Environ Microbiol 60:434–446

    CAS  Google Scholar 

  47. Federle TW, Ventullo RM (1990) Mineralization of surfactants by the microbiota of submerged plant detritus. Appi Environ Microbiol 56:333–449

    CAS  Google Scholar 

  48. Väisänen OM, Nurmiaho-Lassila EL, Marmo SA, Salkinoja-Salonen MS (1994) Structure and composition of biological slimes on paper and board machines. Appl Environ Microbiol 60:641–653

    Google Scholar 

  49. Blenkinsopp SA, Gabbott PA, Freeman C, Lock MA (1991) Seasonal trends in river biofilm storage products and electron transport system activity. Freshwater Biol 26:21–34

    Article  CAS  Google Scholar 

  50. Triska FJ, Oremland RS (1981) Denitrification associated with periphyton communities. Appl Environ Microbiol 42:745–748

    CAS  Google Scholar 

  51. Golladay SW, Sinsabaugh RL (1991) Biofilm development on leaf and wood surfaces in a boreal river. Freshwater Biol 25:437–450

    Article  CAS  Google Scholar 

  52. Sinsabaugh RL, Repert D, Weiland T, Golladay SW, Linkins AE (1991) Exoenzyme accumulation in epilithic biofilms. Hydrobiologia 222:29–37

    Article  CAS  Google Scholar 

  53. Nielsen, PH (1987) Biofilm dynamics and kinetics during high-rate sulfate reduction under anaerobic conditions. Appl Environ Microbiol 53:27–32

    CAS  Google Scholar 

  54. Jacobson SN, O’Mara NL, Alexander M (1980) Evidence for cometabolism in sewage. Appi Environ Microbiol 40:917–921

    CAS  Google Scholar 

  55. Wang Y-S, Subba-Rao RV, Alexander M (1984) Effect of substrate concentration and organic and inorganic compounds on the occurrence and rate of mineralization and cometabolism. Appi Environ Microbiol 47:1195–1200

    CAS  Google Scholar 

  56. Haack TK, McFeters GA (1982 a) Nutritional relationships among microorganisms in an epilithic biofilm community. Microb Ecol 8:115–126

    Article  CAS  Google Scholar 

  57. Haack TK, McFeters GA (1982 b) Microbial dynamics of an epilithic mat community in a high alpine stream. Appl Environ Microbiol 43:702–707

    CAS  Google Scholar 

  58. Lock MA, Ford TE (1985) Microcalorimetric approach to determine relationships between energy supply and metabolism in river epilithon. Appl Environ Microbiol 49:408–412

    CAS  Google Scholar 

  59. Ford TE, Lock MA (1987) Epilithic metabolism of dissolved organic carbon in boreal forest rivers. FEMS Microbiol Ecol 45:89–97

    Article  Google Scholar 

  60. Kirchman DL, Mazzella L, Alberte RS, Mitchell R (1984) Epiphytic bacterial production on Zostera marina. Mar Ecol Prog Ser 15:117–123

    Article  Google Scholar 

  61. Pearl HW, Joye SB, Fitzpatrick M (1993) Evaluation of nutrient limitation of C02 and N2 fixation in marine microbial mats. Mar Ecol Prog Ser 101:297–306

    Article  Google Scholar 

  62. Murray RE, Cooksey KE, Priscu JC (1986) Stimulation of bacterial DNA synthesis by algal exudates in attached algal-bacterial consortia. Appl Environ Microbiol 52:1177–1182

    CAS  Google Scholar 

  63. Jeffrey WH, Paul JH (1986b) Activity measurements of planktonic microbial and micro- fouling communities in a eutrophic estuary. Appi Environ Microbiol 51:157–162

    CAS  Google Scholar 

  64. Alldredge AL, Cole J J, Caron DA (1986) Production of heterotrophic bacteria inhabiting macroscopic organic aggregates (marine snow) from surface waters. Limnol Oceanogr 31:68–78

    Article  Google Scholar 

  65. Karner M, Herndl GJ (1992) Extracellular enzymatic activity and secondary production in free-living and marine-snow-associated bacteria. Mar Biol 113:341–347

    CAS  Google Scholar 

  66. Simon M (1985) Specific uptake rates of amino acids by attached and free-living bacteria in a mesotrophic lake. Appl Environ Microbiol 49:1254–1259

    CAS  Google Scholar 

  67. Jeffrey WH, Paul JH (1986a) Activity of an attached and free-living Vibrio sp. as measured by thymidine incorporation, p-iodonitrotetrazolium reduction, and ATP/DNA ratios. Appl. Environ Microbiol 51:150–156

    CAS  Google Scholar 

  68. van Loosdrecht MCM, Lyklema J, Norde W, Zehnder AJB (1990) Influence of interfaces on microbial activity. Microbiol Rev 54:75–87

    Google Scholar 

  69. Jørgensen BB, Revsbech NP (1985) Diffusive bounday layers and the oxygen uptake of sediments and detritus. Limnol Oceanogr 30:111–122

    Article  Google Scholar 

  70. Paerl HW, Prufert LE (1987) Oxygen-poor microzones as potential sites of microbial N2 fixation in nitrogen-depleted aerobic marine waters. Appl Environ Microbiol 53: 1078–1087

    CAS  Google Scholar 

  71. Christensen PB, Nielsen LP, Revsbech NP, Sørensen J (1989) Microzonation of denitrification activity in stream sediments as studied with a combined oxygen and nitrous oxide microsensor. Appl Environ Microbiol 55:1234–1241

    CAS  Google Scholar 

  72. Binnerup SJ, Jensen K, Revsbech NP, Jensen MH, Sørensen J (1992) Denitrification, dissi- milatory reduction of nitrate to ammonium, and nitrification in a bioturbated estuarine sediment as measured with 15N and microsensor techniques. Appl Environ Microbiol 58:303–313

    CAS  Google Scholar 

  73. Jensen K, Revsbech NP, Nielsen LP (1993) Microscale distribution of nitrification activity in sediment determined with a shielded microsensor for nitrate. Appl Environ Microbiol 59:3287–3296

    CAS  Google Scholar 

  74. Sand-Jensen K, Revsbech NP, Jørgensen, BB (1985) Microprofiles of oxygen in epiphyte communities on submerged macrophytes. Mar Biol 89:55–62

    Article  Google Scholar 

  75. Glud RN, Ramsing NB, Revsbech NP (1992) Photosynthesis and photosynthesis-coupled respiration in natural biofilms quantified with oxygen microsensors. Phycol 28:51–60

    Article  Google Scholar 

  76. Dodds WK (1989) Microscale vertical profiles of N2 fixation, photosynthesis, 02, chlorophyll a, and light in a cyanobacterial assamblage. Appl Environ Microbiol 55:882–886

    CAS  Google Scholar 

  77. Fründ C, Cohen Y (1992) Diurnal cycles of sulfate reduction under oxic conditions in cyanobacterial mats. Appl Environ Microbiol 58:70–77

    Google Scholar 

  78. Garcia-Pichel F, Mechling M, Castenholz RW (1994) Diel migrations of microorganisms within a benthic, hypersaline mat community. Appl Environ Microbiol 60:1500–1511

    CAS  Google Scholar 

  79. Kühl M, Lassen C, Jørgensen BB (1994) Light penetration and light intensity in sandy marine sediments measured with irradiance and scalar irradiance fiber-optic micro- probes. Mar Ecol Prog Ser 105:139–148

    Article  Google Scholar 

  80. Lens PNL, de Beer D, Cronenberg CCH, Houwen FP, Ottengraf SPP, Verstraete WH (1993) Heterogeneous distribution of microbial activity in methanogenic aggregates: pHand glucose microprofiles. Appl Environ Microbiol 59:3803–3815

    CAS  Google Scholar 

  81. Kühl M, Jørgensen BB (1992) Microsensor measurements of sulfate reduction and sulfide oxidation in compact microbial communities of aerobic biofilms. Appl Environ Microbiol 58:1164–1174

    Google Scholar 

  82. Amann RI, Stromley J, Devereux R, Key R, Stahl DA (1992 a) Molecular and microscopic identification of sulfate-reducing bacteria in multispecies biofilms. Appl Environ Microbiol 58:614–623

    CAS  Google Scholar 

  83. Amann RI, Zarda B, Stahl DA, Schleifer K-H (1992 b) Identification of individual pro- karyotic cells aby using enzyme-labeled, rRNA-targeted oligonucleotide probes. Appl Environ Microbiol 58:3007–3011

    CAS  Google Scholar 

  84. Ramsing NB, Kühl M, Jørgensen BB (1993) Distribution of sulfate-reducing bacteria, O2, and H2S in photosynthetic biofilms determined by oligonucleotide probes and micro- electrodes. Appl Environ Microbiol 59:3840–3849

    CAS  Google Scholar 

  85. Smith GB, Tiedje JM (1992) Isolation and characterization of a nitrite reductase gene and its use as a probe for denitrifyinig bacteria. Appl Environ Microbiol 58:376–384

    CAS  Google Scholar 

  86. Poulsen LK, Ballard G, Stahl DA (1993) Use of rRNA fluorescence in situ hybridization for measuring the activity of single cells in young and established biofilms. Appl Environ Microbiol 59:1354–1360

    CAS  Google Scholar 

  87. Zambon JJ, Huber PS, Meyer AE, Slots J, Fornalik MS, Baier RE (1984) In situ identification of bacterial species in marine microfouling films by using an immunofluorescence technique. Appl Environ Microbiol 48:1214–1220

    CAS  Google Scholar 

  88. Rogers J, Keevil CW (1992) Immunogold and fluorescein immunolabelling of Legionella pneumophila within an aquatic biofilm visualized by using episcopic differential interference contrast microscopy. Appl Environ Microbiol 58:2326–2330

    CAS  Google Scholar 

  89. Watling L (1988) Small-scale features of marine sediments and their importance to the study of deposit-feeding. Mar Ecol Prog Ser 47:135–144

    Article  Google Scholar 

  90. Watling L (1989) Small-scale features of marine sediments and their imprtance to the study of deposit feeding. In: Bowman MJ, Barber RT, Mooers CNK, Raven JA (eds) Lecture Notes on Coastal and Estuarine Studies. Ecology of Marine Deposit Feeders. Springer, New York, pp 269–290

    Google Scholar 

  91. Wachendörfer V, Krumbein WE (1991) The fluorescent sediment thin section technique: spatial distribution of microorganisms in North Sea microbial mat systems. Kieler Meeresforsch, Sonderh 8:381–388

    Google Scholar 

  92. Kinniment SL, Wimpenny JWT (1992) Measurements of the distribution of adenylate concentrations and adenylate energy charge acrossPseudomonas aeruginosa biofilms. Appl Environ Microbiol 58:1629–1635

    CAS  Google Scholar 

  93. Rodriguez GG, Phipps D, Ishiguro K, Ridgway HF (1992) Use of a fluorescent redox probe for direct visulization of actively respiring bacteria. Appl Environ Microbiol 58:1801–1808

    CAS  Google Scholar 

  94. Schaule G, Flemming H-C, Ridgway HF (1993) Use of 5-cyano-2,3-ditolyl tetrazolium chloride for quantifying planktonic and sessile respiring bacteria in drinking water. Appl Environ Microbiol 59:3850–3857

    CAS  Google Scholar 

  95. Lappin-Scott HM, Costerton JW, Marrie TJ (1992) Biofilms and biofouling. Encyclopedia of Microbiol 1:277–284

    Google Scholar 

  96. Marshall KC (1991) Planktonic versus sessile life of prokaryotes. In: Balows A, Trüper HG, Dworkin M, Harker W, Schleifer KH (eds) The Prokaryotes. Springer, New York, pp 262–275

    Google Scholar 

  97. Alldredge AL, Silver MW (1988) Characteristics, dynamics and significance of marine snow. Prog Oceanogr 20:41–82

    Article  Google Scholar 

  98. Grossart H-P, Simon M (1993) Limnetic macroscopic organic aggregates (lake snow): occurrence, characteristics, and microbial dynamics in Lake Constance. Limnol Oceanogr 38:532–546

    Article  Google Scholar 

  99. Shanks AL, Reeder ML (1993) Reducing microzones and sulfide production in marine snow. Mar Ecol Prog Ser 96:43–47

    Article  Google Scholar 

  100. Bianchi M, Marty D, Teyssie J-L, Fowler SW (1992) Strictly aerobic and anaerobic bacteria associated with sinking particulate matter and zooplankton fecal pellets. Mar Ecol Prog Ser 88:55–60

    Article  Google Scholar 

  101. Herndl GJ (1992) Marine snow in the Northern Adriatic Sea: possible causes and consequences for a shallow ecosystem. Mar Microb Food Webs 6:149–172

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Meyer-Reil, LA. (1996). Ökologie mikrobieller Biofilme. In: Ökologie der Abwasserorganismen. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61423-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61423-1_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64838-0

  • Online ISBN: 978-3-642-61423-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics