Skip to main content

Biologische Ursachen von Schaum und Schwimmschlamm in Belebungsanlagen sowie mögliche Gegenmaßnahmen

  • Chapter
Ökologie der Abwasserorganismen
  • 572 Accesses

Zusammenfassung

In den letzten Jahren ist in der biologischen Abwasserreinigung immer häufiger die Bildung viskoser, stabiler Schäume auf Belebungsbecken zu beklagen. In der Nachklärung schäumender Anlagen kommt es häufig zur Entwicklung von Schwimmschlamm, d.h. zum teilweisen Aufschwimmen des abgesetzten Schlammes und damit zum Schlammabtrieb in das Gewässer. Oft ergeben sich in diesen Anlagen auch in den Faulräumen unerwünschte Schaumbildung und Flotationseffekte.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Baumann M, Lemmer H, Ries H (1988) Scum actinomycetes in sewage treatment plants. Part 1. Growth kinetics of Nocardia amarae in chemostat culture. Wat Res 22:755–759

    Article  CAS  Google Scholar 

  2. Blackall LL, Marshall KC (1989) The mechanism of stabilization of actinomycete foams and the prevention of foaming under laboratory conditions. J Ind Microbiol 4:181–188

    Article  CAS  Google Scholar 

  3. Blackall LL, Parlett JH, Hayward AC, Minnikin DE, Greenfield PF, Harbers AE (1989) Nocardia pinensis sp. nov., an actinomycete found in activated sludge foams in Australia. J Gen Microbiol 135:1547–1558

    CAS  Google Scholar 

  4. Blackall LL, Harbers AE, Greenfield PF, Hayward AC (1991) Foaming in activated sludge plants: a survey in Queensland, Australia and an evaluation of some control strategies. Wat Res 25:313–317

    Article  CAS  Google Scholar 

  5. Blackbeard JR, Ekama GA, Marais G (1986) A survey of filamentous bulking and foaming in activated sludge plants in South Africa. WPC 85:90–100

    CAS  Google Scholar 

  6. Brown CM, Ellwood DC, Hunter JR (1977) Growth of bacteria at surfaces. Influence of nutrient limitation. FEMS Microbiol. Lett. 1:163–166

    Article  CAS  Google Scholar 

  7. Chiesa SC, Irvine RL (1985) Growth and control of filamentous microbes in activated sludge: An integrated hypothesis. Wat. Res. 19:471–479

    Article  CAS  Google Scholar 

  8. Chudoba J, Ottova V, Madera V (1973 a) Control of activated sludge filamentous bulking. I. Effect of the hydraulic regime or degree of mixing in an aeration tank. Wat. Res. 7:1163–1182

    Article  CAS  Google Scholar 

  9. Chudoba J, Grau P, Ottova V (1973 b) Control of activated sludge filamentous bulking. II. Selection of microorganisms by means of a selector. Wat. Res. 7:1389–1406

    Article  CAS  Google Scholar 

  10. Cooper DG, Zajic JE (1980) Surface active compounds from microorganisms. Adv. Appl. Microbiol. 26:229–253

    Article  CAS  Google Scholar 

  11. Eikelboom DH (1992) Drijflagen op rioolwaterzuiveringsinstallaties. Stowa Report 92–01, Den Haag

    Google Scholar 

  12. Eikelboom DH (1994) The Microthrix parvicella puzzle. Wat Sci Tech 29:271–280

    CAS  Google Scholar 

  13. Franz A, Matscht N (1994) Investigation of a bacteria-enzyme additive to prevent foaming in activated sludge plants. Wat Sci Tech 29:281–284

    CAS  Google Scholar 

  14. Gabb DMD, Still DA, Ekama GA, Jenkins D, Marais G (1991) The selector effect on filamentous bulking in long sludge age activated sludge systems. Wat Sci Tech 23:867–977

    CAS  Google Scholar 

  15. Ho C-F, Jenkins D (1991) The effect of surfactants on Nocardia foaming in activated sludge. Wat Sci Tech 23:879–887

    CAS  Google Scholar 

  16. Kappeler J, Gujer W (1994) Scumming due to actinomycetes: Towards a better understanding by modelling. Wat Res 28:763–779

    Article  CAS  Google Scholar 

  17. Kjelleberg S, Humphrey BA, Marshall KC (1983) Initial phases of starvation and activity of bacteria at surfaces. Appl Environ Microbiol 46:978–984

    CAS  Google Scholar 

  18. Kjelleberg S (1984) Effects of interfaces on survival mechanisms of copiotrophic bacteria in low-nutrient habitats. In: Klug MJ, Reddy CA (eds) Current perspectives in microbial ecology. ASM, Washington DC, pp 151–159

    Google Scholar 

  19. Köhler R (1975) Technologie und Anwendung der Entspannungsflotation in der Abwasserreinigung. Wasser Luft Betrieb 19:72–77

    Google Scholar 

  20. Kosaric N, Choi HY, Blaszczyk R (1990) Biosurfactant production from Nocardia SFC-D. Tenside Surf Det 27:294–296

    CAS  Google Scholar 

  21. Laubenberger G, Hartmann L (1971) Ursachen für das Aufschwimmen von Überschußschlamm aus der biologischen Stufe in Vorklärbecken. GWF Wasser Abwasser 112:154–156

    Google Scholar 

  22. Lechevalier HA (1975) Actinomycetes of sewage-treatment plants. Environ Prot Tech Ser EPA-600/2–75-031, Cincinnati, Ohio 45268

    Google Scholar 

  23. Lechevalier HA, Lechevalier MP (1974) Nocardia amarae sp. nov., an actinomycete common in foaming activated sludge. Inter J Syst Bact 24:278–288

    Article  Google Scholar 

  24. Lemlich R (1972) Adsubble processes: foam fractionation and bubble fractionation. J Geophes 77:5204–5210

    Article  CAS  Google Scholar 

  25. Lemmer H (1985) Mikrobiologische Untersuchungen zur Bildung von Schwimmschlamm auf Kläranlagen. Dissertation, Technische Universität München

    Google Scholar 

  26. Lemmer H (1986) The ecology of scum causing actinomycetes in sewage treatment plants. Wat Res 20:531–535

    Article  Google Scholar 

  27. Lemmer H, Kroppenstedt RM (1984) Chemotaxonomy and physiology of some actinomycetes isolated from scumming activated sludge. System Appl Microbiol 5:124–135

    Google Scholar 

  28. Lemmer H, Baumann M (1988) Scum actinomycetes in sewage treatment plants. Part 2. The effect of hydrophobic substrate. Wat Res 22:761–763.

    Article  CAS  Google Scholar 

  29. Lemmer H, Ries H, Baumann M (1991) Selection and Growth Strategies of Filamentous Microorganisms in Bulking and Scumming Activated Sludge. In: Madoni P (ed) Biological approach to sewage treatment process: Current status and perspectives. Luigi Bazzucchi Center, Perugia, pp 151–155

    Google Scholar 

  30. Marchesi JR, Russell NJ, White GF, House WA (1991) Effect of surfactant adsorption and biodegradability on the distribution of bacteria between sediments and water in a freshwater microcosm. Appl Environ Microbiol 57:2507–2513

    CAS  Google Scholar 

  31. Mori T, Sakai Y, Honda K, Yano J, Hashimoto S (1988) Stable abnormal foam in activated sludge process produced by Rhodococcus sp. with strong hydrophobic property. Environ Technol Letters 9:1041–1048

    Article  CAS  Google Scholar 

  32. Mulligan CN, Gibbs BF (1989) Correlation of nitrogen metabolism with biosurfactant production by Pseudomonas aeruginosa. Appl Environ Microbiol 55:3016–3019

    CAS  Google Scholar 

  33. Poindexter JS (1987) Bacterial responses to nutrient limitation. In: Fletcher M, Gray TRG, Jones JG (eds) Ecology of microbial communities. Cambridge University Press, London, pp 283–317

    Google Scholar 

  34. Pretorius WA, Laubscher CJP (1987) Control of biological scum in activated sludge plants by means of selective flotation. Wat Sci Tech 19:1003–1011

    CAS  Google Scholar 

  35. Pujol R, Duchene PH, Schetrite S, Canler JP (1991) Biological foams in activated sludge plants: characterization and situation. Wat Res 25:1399–1404

    Article  CAS  Google Scholar 

  36. Römpp Chemie Lexikon (1992) 9. Aufl. Thieme Verlag, Stuttgart

    Google Scholar 

  37. Rosenberg E (1986) Microbial surfactants. CRC Crit Rev Biotechnol 3:109–132

    Article  CAS  Google Scholar 

  38. Segerer M (1984) Untersuchungen zur Schwimmschlammbildung in Kläranlagen durch Actinomyceten. Korr Abw 31:1073–1076

    CAS  Google Scholar 

  39. Sezgin M, Karr PR (1986) Control of actinomycete scum on aeration basins and clarifiers. J Wat Poll Control Fed 58:972–977

    Google Scholar 

  40. Slijkhuis H (1983) Microthrix parvicella, a filamentous bacterium isolated from activated sludge: Cultivation in a chemically defined medium. Appl Environ Microbiol 46:832–833

    CAS  Google Scholar 

  41. Slijkhuis H, Deinema MH (1988) Effect of environmental conditions on the occurrence of Microthrix parvicella in activated sludge. Wat Res 22:825–828

    Article  CAS  Google Scholar 

  42. Soddell JA, Seviour RJ (1990) Microbiology of foaming in activated sludge plants. J Appl Bact 69:145–176

    Article  CAS  Google Scholar 

  43. Soddell JA, Seviour RJ (1994) Incidence and morphological variability of Nocardia pinensis in Australian activated sludge plants. Wat Res 28:2343–2351

    Article  Google Scholar 

  44. Stanier RY, Adelberg EA, Ingraham JL (1984) General Microbiology. MacMillan Press, London

    Google Scholar 

  45. Valsaraj KT (1994) Hydrophobie compounds in the environment: adsorption equilibrium at the air-water interface. Wat Res 28:819–830

    Article  CAS  Google Scholar 

  46. Wagner M, Erhart R, Manz W, Amann R, Lemmer H, Wedi D, Schleifer K-H (1994) Development of an rRNA-targeted oligonucleotide probe specific for the genus Acinetobacter and its application for in situ monitoring in activated sludge. Appl Environ Microbiol 60: 792–800

    CAS  Google Scholar 

  47. Wangersky PJ (1976) The surface film as a physical environment. Ann Rev Ecol Syst 161–176

    Google Scholar 

  48. Ziegler M, Dott W (1990) Blähschlamm verursachende Bakterien aus Kläranlagen. II. Wachstumsphysiologie fadenförmiger Bakterien. Z Wasser-Abwasser-Forsch 23:49–57

    CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lemmer, H. (1996). Biologische Ursachen von Schaum und Schwimmschlamm in Belebungsanlagen sowie mögliche Gegenmaßnahmen. In: Ökologie der Abwasserorganismen. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61423-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61423-1_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64838-0

  • Online ISBN: 978-3-642-61423-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics