Skip to main content

Polyphosphatspeichernde Bakterien und Weitergehende biologische Phosphorentfernung in Kläranlagen

  • Chapter
Ökologie der Abwasserorganismen
  • 573 Accesses

Zusammenfassung

Kommunale Kläranlagen mit biologischen Reinigungsstufen sind bisher meist darauf ausgerichtet und optimiert worden, eine möglichst vollständige Entfernung der organischen Schmutzstoffe aus dem Abwasser zu gewährleisten. Ein großes, weltweites Problem sind aber meist immer noch die anorganischen Nährstoffe, die mit dem nur unvollständig gereinigten Abwasser in natürliche Gewässer gelangen. Durch den erhöhten Zufluß an Stickstoff und Phosphor kann es zu einer Störung des ökologischen Gleichgewichts in Seen, langsam fließenden Flüssen und Talsperren, aber auch den Meeren kommen. Eine zu gute Versorgung mit den anorganischen Nährsalzen führt zu einer Eutrophierung der Gewässer. Es kann eine „Algenblüte“, eine Massenentwicklung von Algen, ausgelöst werden. Bekannte Folgen sind: Schaum- und Schleimbelästigung an Badestränden und eine Toxinbildung durch Cyanobakterien, die zu Haut- und Atemproblemen beim Menschen und zu Todesfällen bei Tieren führen kann. Die O2-Atmung der Algen bei Nacht und besonders die spätere Biomassezersetzung verursachen in den Gewässern u.a. Sauerstoffmangel, so daß es zu Fischsterben kommt. Ein O2-Mangel bewirkt sekundär auch eine Reduktion von Nitrat zum giftigen Nitrit oder eine Phosphatfreisetzung aus dem Sediment. Die Bereitung von Trinkwasser aus eutrophierten Gewässern erfordert außerdem einen sehr hohen Reinigungsaufwand. Es ist deshalb eines der wichtigsten Ziele in der heutigen Abwassertechnik, neben der Beseitigung der organischen Schmutzstoffe auch die anorganischen Nährsalze Stickstoff und Phosphor weitgehend zu entfernen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Dryden FD, Stern G (1968) Renovated waste water creates recreational lake. Environ Sci Technol 2:268–278

    Article  Google Scholar 

  2. Nesbitt JB (1969) Phosphorus removal, the state of the art. J Wat Pollut Control Fed 41: 701–713

    CAS  Google Scholar 

  3. Schaak F, Boschet AF, Chevalier D, Kerlain F, Senelier Y (1985) Efficiency of existing biological treatment plants against phosphorus pollution. Tech Sci Municip 80:173–181

    Google Scholar 

  4. Yeoman S, Stephenson T, Lester JN, Perry R (1988) The removal of phosphorus during wastewater treatment: A review. Environ Poll 49:183–233

    Article  CAS  Google Scholar 

  5. Bever J, Teichmann H (eds) (1990) Weitergehende Abwasserreinigung. R.Oldenbourg Verlag, München, Wien

    Google Scholar 

  6. Abwassertechnische Vereinigung (1989) Biologische Phosphorentferung. Arbeitsbericht der ATV-Arbeitsgruppe 2.6.6, Korr Abw 36:337–348

    Google Scholar 

  7. Abwassertechnische Vereinigung (1994) ATV-Merkblatt Nr 208

    Google Scholar 

  8. Levin GV, Shapiro J (1965) Metabolic uptake of phosphorus by wastewater organisms. J Wat Pollut Control Fed 37:800–821

    CAS  Google Scholar 

  9. Yall I, Boughton WH, Knudson RC, Sinclair, NA (1970) Biological uptake of phosphorus by activated sludge. Appl Microbiol 20:145–150

    CAS  Google Scholar 

  10. Meganck MTJ, Faup GM (1988) Enhanced biological phosphorus removal from waste waters. Biotreatment Syst (ed. Wise DL) 3:111–204

    Google Scholar 

  11. Toerien DF, Gerber A, Lötter LH, Cloete TE (1990) Enhanced biological phosphorus removal in activated sludge systems. Adv Microbiol Ecol 11:173–230

    CAS  Google Scholar 

  12. Schön G (1994) Biologische Phosphorentfernung bei der Abwasserreinigung im Belebungsverfahren. Bio Engineering 4:23–32

    Google Scholar 

  13. Srinath EG, Sastry CA, Pillai SC (1959) Rapid removal of phosphorus from sewage by activated sludge. Experientia 15:339–340

    Article  CAS  Google Scholar 

  14. Alarcon GO (1961) Removal of Phosphorus from Sewage. Master’s Essay, The John Hopkins University, Baltimore, MD, USA

    Google Scholar 

  15. Menar AB, Jenkins D (1969) The fate of phosphorus in waste treatment processes. Proc 24th Ind Waste Treatment Conference, pp 665–674, Purdue University, Lafayette, Ind, USA

    Google Scholar 

  16. Arvin E (1985) Biological Removal of phosphorus from wastewater. CRC Critical Reviews in Environmental Control 15:25–64

    Article  CAS  Google Scholar 

  17. Fuhs GW, Chen M (1975) Microbiological basis of phosphate removal in the activated sludge process for the treatment of wastewater. Microbiol Ecol 2:119–138

    Article  CAS  Google Scholar 

  18. Barnard JL (1976) A review of biological phosphorus removal in the activated sludge process. Water SA 2:136–144

    CAS  Google Scholar 

  19. Harold FM (1966) Inorganic polyphosphates in biology: Structure, metabolism and function. Bacteriol Rev 30:772–794

    CAS  Google Scholar 

  20. Kulaev IS, Vagabov VM (1983) Polyphosphate metabolism in microorganisms. Adv Microbiol Physiol 24:83–171

    Article  CAS  Google Scholar 

  21. Halvorson HO, Suresh N, Roberts MF, Coccia M, Chikarmane HM (1987) Metabolically active surface polyphosphate pool in Acinetobacter lwoffii In: Torriani-Gorine A, Roth- mann FG, Silver S, Wright A, Yagil E (eds), Phosphate Metabolism and Cellular Regulation in Microorganisms, American Society for Microbiology, Washington, D.C., pp 220–224

    Google Scholar 

  22. Streichan M, Schön G (1991) Periplasmic and intracytoplasmic polyphosphate and easily washable phosphate in pure cultures of sewage bacteria. Wat Res 25:9–13

    Article  CAS  Google Scholar 

  23. Kornberg A (1995) Inorganic Polyphosphate: toward making a forgotten polymer unforgettable. J Bacteriol 177:491–496

    CAS  Google Scholar 

  24. Gurr E (1965) The rational use of dyes in biology. Leonard Hill, London, p 216

    Google Scholar 

  25. Drews G (1983) Mikrobiologisches Praktikum, 4. Aufl, Springer, Berlin, Heidelberg

    Google Scholar 

  26. Allan RA, Miller JJ (1980) Influence of S-adenosyl-methionine on DAPI induced fluorescence of polyphosphate in the yeast vacuole. Can J Microbiol 26:912–919

    Article  CAS  Google Scholar 

  27. Schönborn W (1986) Historical Developments and Ecological Fundamentals. In: Rehm H-J, Reed G (eds), Biotechnology, Band 8, Microbial degradations (Schönborn W, ed), 1. Auflage, VCH- Verlagsgesellschaft, Weinheim, pp 3–42

    Google Scholar 

  28. Arvin E, Kristensen GH (1985) Exchange of Organics, Phosphate and Cations between Sludge and Water in Biological Phosphorus and Nitrogen Removal Process. Wat Sci Tech 17: 147–162

    CAS  Google Scholar 

  29. Nicholls HA, Osborn DW (1979) Bacterial stress: a prerequisite for biological removal of phosphorus. J Wat Pollut Control Fed 51:557–569

    CAS  Google Scholar 

  30. Rensink JH, Donker HJGW, Simons TSJ (1986) Biologische Phosphorelimination bei niedrigen Schlammbelastungen. Gwf-Wasser/Abwasser 127:449–453

    CAS  Google Scholar 

  31. Streichan M, Junghans D, Schön G (1989) Comparative study of biological phosphorus removal by activated sludge in a pilot plant and in laboratory batch experiments. IAWPRC/EW PCA-specialized conference on „Upgrading of wastewater treatment plants“. Wat Sci Technol 22:279–280

    Google Scholar 

  32. Kerrn-Jespersen JP, Henze M (1993) Biological phosphorus uptake under anoxic and aerobic conditions. Wat Res 27:617–624

    Article  CAS  Google Scholar 

  33. Schön G, Streichan M (1989) Anoxische Phosphataufnahme und Phosphatabgabe durch belebten Schlamm aus Kläranlagen mit biologischer Phosphorentfernung. Gwf-Wasser/ Abwasser 130:67–73

    Google Scholar 

  34. Marais G, Loewenthal RE, Siebritz IP (1983) Observations supporting phosphate removal by biological excess uptake. A review. Wat Sci Tech 15:15–41

    CAS  Google Scholar 

  35. Gerber A, Mostert ES, Winter CT, De Villiers RH (1986) The effect of acetate and other short chain carbon compounds on the kinetics of biological nutrient removal. Water SA 12:7–12

    CAS  Google Scholar 

  36. Schönberger R (1989) Optimierungsmöglichkeiten bei der biologischen Phosphorelimination. Gwf-Wasser/Abwasser 130:49–55

    Google Scholar 

  37. Witt PCh, Hahn HH (1995) Bio-P und Chem-P: Neue Erkenntnisse und Versuchsergebnisse. In: Bio-P Hannover 95.Veröffentlichungen des Institutes für Siedlungswasserwirtschaft und Abfalltechnik der Universität Hannover, Heft 92, S. 5–1 bis 5–23

    Google Scholar 

  38. Wentzel MC, Dold PL, Ekama GA, Marais GvR (1985) Kinetics of biological phosphorus release. Wat Sci Tech 17:(11/12) 57–71

    CAS  Google Scholar 

  39. Fukase T, Shibata M, Miyaji Y.(1984) The role of an anaerobic stage on biological phosphorus removal. Wat Sci Tech 17:(2/3) 69–80

    Google Scholar 

  40. Schön G, Geywitz-Hetz S, Valta A (1993) Weitergehende biologische Phosphorentfernung und organische Reservestoffe im belebten Schlamm. In: Biologische Phosphoreliminierung aus Abwässern, Kolloquium an der TU Berlin, 27./28.9.1993, Schriftenreihe Biologische Abwasserreinigung der Technischen Universität Berlin, pp 181–194

    Google Scholar 

  41. Schön G, Geywitz S, Mertens F (1993) Influence of dissolved oxygen and oxidation-reduction potential on phosphate release and uptake by activated sludge from sewage plants with enhanced biological phosphorus removal. Wat Res 27:349–354

    Article  Google Scholar 

  42. Arun V, Mino T, Matsuo T (1988) Biological mechanism of acetatc uptake mediated by carbohydrate consumption in excess phosphorus removal systems. Wat Res 22:565–570

    Article  CAS  Google Scholar 

  43. Satoh H, Mino T, Matsuo T (1992) Uptake of organic substrates and accumulation of poly hydroxyalkanoates linked with glycolysis of intracellular carbohydrates under anaerobic conditions in the biological excess phosphate removal processes. Wat Sci Tech 26:933–942

    CAS  Google Scholar 

  44. Matsuo T, Mino T, Satoh H (1992) Metabolism of organic substances in anaerobic phase of biological phosphate uptake process. Wat Sci Tech 25:83–92

    CAS  Google Scholar 

  45. Hascoet MC, Florentz M (1985) Influence of nitrate on biological phosphorus removal from wastewaters. Water SA 11:1–8

    CAS  Google Scholar 

  46. Mostert ES, Gerber A, van Riet CJJ (1988) Fatty acid utilisation by sludge from full-scale nutrient removal plants, with special reference to the role of nitrate. Water SA 14:179–184

    CAS  Google Scholar 

  47. Lötter LH, van der Merwe EHM (1987) The activities of some fermentation enzymes in activated sludge and their relationship to enhanced phosphorus removal. Water Res 21: 1307–1310

    Article  Google Scholar 

  48. Kortstee GJJ, Appeldoorn KJ, Bonting CFC, van Niel EWJ, van Veen HW (1994) Biology of polyphosphate-accumulating bacteria involved in enhanced biological phosphorus removal. FEMS Microbiol Rev 15:137–153

    Article  CAS  Google Scholar 

  49. Iwema A, Meunier A (1985) Influence of nitrate on acetic acid induced biological phosphate removal, Wat Sci Tech 17:289–294

    CAS  Google Scholar 

  50. Comeau Y, Hall KJ, Hancock REW, Oldham WK (1986) Biological model for enhanced biological phosphorus removal. Wat Res 20:1511–1521

    Article  CAS  Google Scholar 

  51. Wentzel MC, Lötter LH, Ekama GA, Loewenthal RE, Marais GvR (1991) Evaluation of biochemical models for biological excess phosphorus removal. Wat Sci Tech 23:567–576

    CAS  Google Scholar 

  52. Mino T, Arun V, Tsuzuki Y, Matsuo T (1987) Effect of phosphorus accumulation on acetate metabolism in the biological phosphorus removal process. In: Biological Phosphate Removal from Wastewaters (Adv Water Pollut Control Vol 4, R. Ramadori, ed), Pergamon Press Oxford, pp 27–38

    Google Scholar 

  53. Mino T, Satoh H, Matsuo T (1994) Metabolism of different bacterial populations in enhanced biological phosphate removal processes. Wat Sci Tech 29:67–70

    CAS  Google Scholar 

  54. Deinema MH, van Loosdrecht M, Schölten A (1985) Some physiological characteristics of Acinetobacter spp. accumulating large amounts of phosphate. Wat Sci Tech 17:119–125

    CAS  Google Scholar 

  55. Lötter LH, Murphy M (1985) The identification of heterotrophic bacteria in an activated sludge plant with particular reference to polyphosphate accumulation. Water SA 11:179–184

    Google Scholar 

  56. Stephenson T (1987): Acinetobacter Its role in biological phosphate removal. In: Biological Phosphate Removal from Wastewaters, in Adv Water Pollut Control Vol 4 (R. Ramadori, ed), Pergamon Press, Oxford pp 313–316

    Google Scholar 

  57. Deinema MH, Habets LHA, Scholten J, Turkstra E, Webers HAAM (1980) The accumulation of polyphosphate in Acinetobacter spp. FEMS Microbiol Lett 9:275–279

    Article  CAS  Google Scholar 

  58. Wentzel MC, Lötter LH, Loewenthal RE, Marais GvR (1986) Metabolic behaviour of Acinetobacter spp. in enhanced biological phosphorus removal — a biochemical model. Water SA 12:209–224

    CAS  Google Scholar 

  59. Bark K, Sponner A, Kämpfer P, Grund S, Dott W (1992) Differences in polyphosphate accumulation and phosphate adsorption by Acinetobacter isolates from wastewater producing polyphosphate: AMP phosphotransferase. Wat Res 26:1379–1388

    Article  CAS  Google Scholar 

  60. Kämpfer P (1995): Klassische Methoden zur Charakterisierung von Abwasserbakterien — Grenzen und Möglichkeiten. Kapitel 4 in diesem Buch.

    Google Scholar 

  61. Wiedmann-AI-Ahmad M, Tichy H-V, Schön G (1994) Characterization of Acinetobacter type strains and isolates obtained from wastewater treatment plants by PCR fingerprinting. Appl Environ Microbiol 60:4066–4071

    Google Scholar 

  62. Van Groenestijn JW, Vlekke GJFM, Anink DME, Deinema MH, Zehnder AJB (1988) Role of cations in accumulation and release of phosphate by Acinetobacter strain 210A. Appl Environ Microbiol 54:2894–2901

    Google Scholar 

  63. Yashphe J, Chikarmane H, Iranzo M, Halvorson HO (1992) Inorganic phosphate transport in Acinetobacter Iwoffii. Curr Microbiol 24:275–280

    Article  CAS  Google Scholar 

  64. Van Veen HW, Abee T, Kortstee GJJ, Konings WN, Zehnder AJB (1993) Characterization of two phosphate transport systems in Acinetobacter johnsonii 210A. J Bacterid 175: 200–206

    Google Scholar 

  65. Bonting CFC, Kortstee GJJ, Zehnder AJB (1991) Properties of polyphosphate: AMP phosphotransferase of Acinetobacter strain 210 A. J Bacteriol 173:6484–6488

    CAS  Google Scholar 

  66. Van Groenestijn JW, Deinema MH, Zehnder AJB (1987) ATP production from polyphosphate inAcinetobacter strain 210 A. Arch Microbiol 148:14–19

    Article  Google Scholar 

  67. Van Groenestijn JW, Bentvezen MMA, Deinema MH, Zehnder AJB (1989) Polyphosphate- degrading enzymes in Acinetobacter spp. and activated sludge. Appl Environ Microbiol 55: 219–223

    Google Scholar 

  68. Yashphe J, Chikarmane H, Iranzo M, Halvorson HO (1990) Phosphatases ofAcinetobacter Iwoffii. Localization and regulation of synthesis by orthophosphate. Curr Microbiol 20: 273–280

    Article  CAS  Google Scholar 

  69. Bonting CFC, Kortstee GJJ, Zehnder AJB (1993) Properties of polyphosphatase ofAcinetobacter johnsonii 210 A. Ant. v. Leenwenh. 64:75–81

    Article  CAS  Google Scholar 

  70. Dawes EA, Senoir PJ (1973) the role and regulation of energy reserve polymers in microorganisms. Adv Microbiol Physiol 10:135–266

    Article  CAS  Google Scholar 

  71. Vierkant MA, Martin DW, Stewart JR (1990) Poly-beta-hydroxybutyrate production in eight strains of the genus Acinetobacter. Can J Microbiol 36:657–663

    Article  CAS  Google Scholar 

  72. Rees GN, Vasiliadis G, May JW, Bayly RC (1993) Production of poly-beta-hydroxybutyrate in Acinetobacter spp. isolated from activated sludge. Appl Microbiol Biotechnol 38:734–737

    Article  CAS  Google Scholar 

  73. Cloete TE, Steyn PL (1988) The role of Acinetobacter as a phosphorus removing agent in activated sludge. Wat Res 22:971–976

    Article  CAS  Google Scholar 

  74. Streichan M, Golecki JR, Schön G (1990) Polyphosphate-accumulating bacteria from sewage plants with different processes for biological phosphorus removal. FEMS Microbio Ecol 73:113–124

    Article  CAS  Google Scholar 

  75. Auling G, Pilz F, Busse H-J, Karrasch S, Streichan M, Schön G (1991) Analysis of the polyphosphate accumulating microflora in phosphorus-eliminating anaerobic-aerobic activated sludge systems by using diaminopropane as a biomarker for rapid estimation of Acinetobacter spp. Appl Environ Microbiol 57:3585–3592

    CAS  Google Scholar 

  76. Wagner M, Erhart R, Manz W, Amann R, Lemmer H, Wedi D, Schleifer K-H (1994) Development of an rRNA-targeted oligonucleotide probe specific for the genus Acinetobacter and its application for in situ monitoring in activated sludge. Appl Environ Microbiol 60: 792–800

    CAS  Google Scholar 

  77. Bond PL, Hugenholtz P, Keller J, Blackall LL (1995) Bacterial community structures of phosphate-removing and non-phosphate-removing activated sludges from sequencing batch reactors. Appl Environ Microbiol 61:1910–1916

    CAS  Google Scholar 

  78. Suresh N, Warburg, R, Timmermann M, Wells J, Coccia M, Roberts MF, Halvorston HO(1985) New strategies for the isolation of microorganisms responsible for phosphate accumulation. Wat Sci Tech 17:99–111

    Google Scholar 

  79. Hiraishi A, Masamune K, Kitamura H (1989) Characterization of the bacterial population structure in an anaerobic-aerobic activated sludge system on the basis of respiratory qui- none profiles. Appl Environ Microbiol 55:897–901

    CAS  Google Scholar 

  80. Nakamura K, Masuda K, Mikami E (1991) Isolation of a new type of polyphosphate accumulating bacterium and ist phosphate removal characteristics. J. Fermentation Bioengineering 71:258–263

    Article  CAS  Google Scholar 

  81. Kämpfer P, Eisenträger A, Hergt V, Dott W (1990) Untersuchungen zur bakteriellen Phosphateliminierung. I. Mitteilung: Bakterienflora und bakterielles Phosphatspeicherungsver- mögen in Abwasserreinigungsanlagen. Gwf-Wasser/Abwasser 131:156–164

    Google Scholar 

  82. Ubukat, Takii S (1994) Induction ability of excess phosphate accumulation for phosphate removing bacteria. Wat Res 28:247–249

    Article  Google Scholar 

  83. Nakamura K, Hiraishi A, Yoshimi Y, Kawaharasaki M, Masuda K, Kamagata Y (1995) Micro lunatus phosphorus gen nov, sp nov, a new gram-positive polyphosphate-accumulating bacterium isolated from activated sludge. Int J System Bacteriol 45:17–22

    Article  CAS  Google Scholar 

  84. Lemmer H (1985) Wachstumsverhalten von Actinomyceten („Nocardia“) in Kläranlagen mit Schwimmschlammproblemen. Korr Abw 32:965–971

    Google Scholar 

  85. Slijkhuis H (1983)Microthrix parvicella, a filamentous bacterium isolated from activated sludge: cultivation in a chemically defined medium. Appl Environ Microbiol 46:832–839

    CAS  Google Scholar 

  86. Brodisch KEU (1985) Zusammenwirken zweier Bakteriengruppen bei der biologischen Phosphateliminierung. Gwf-Wasser/Abwasser 126:237–240

    CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schön, G. (1996). Polyphosphatspeichernde Bakterien und Weitergehende biologische Phosphorentfernung in Kläranlagen. In: Ökologie der Abwasserorganismen. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61423-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61423-1_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64838-0

  • Online ISBN: 978-3-642-61423-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics