The E.F.M. Applied to Transient Heat Conduction Problems

  • B. G. McEnery
  • M. H. Quinlan
Conference paper


The solution of 2-D transient heat conduction problems are considered. The Laplace transform in time is applied to the differential equation and the boundary conditions. The ‘transformed problem’ is solved using the Edge Function Method. Solutions in the time domain are obtained using a numerical Laplace transform inversion technique.


Truncation Error Vertex Function Edge Function Numerical Inversion Rational Interpolation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Quinlan, P.M.; O’Callaghan, M.J.A.: The Edge Function Method (E.F.M.) for Cracks, Cavities and Curved Boundaries in Elastostatics. Topics in Boundary Elements Vol. 3 C.A. Brebbia (Ed), Springer-Verlag, 1986.Google Scholar
  2. 2.
    Durbin, F.: Numerical inversion of Laplace transforms: an efficient improvement to Dubner and Abate’s method. Comput. J. 17 (1974) 371–376.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Narayanan, G.V.; Beskos, D.E.: Numerical Operational methods for Time-Dependant Linear Problems. Int.J.Num.Method, in Engineering 18(1982) 1829–1854.MathSciNetADSCrossRefzbMATHGoogle Scholar
  4. 4.
    De Hoog, F.R.; Knight, J.H.; Stokes, A.N.: An improved method for Numerical Inversion of Laplace Transforms. SIAM J.Sci.STAT.Comput. 3(1982) 357–366.CrossRefzbMATHGoogle Scholar
  5. 5.
    Honig, G.; Hirdes, U.: A method for the numerical inversion of Laplace transforms. J.Comput.Appl.MATH. 10(1984) 113–132.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Schneider, C.; Werner, W.: Some new Aspects of Rational Interpolation. MATH Comp. 47(1986) 285–299.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • B. G. McEnery
    • 1
  • M. H. Quinlan
    • 1
  1. 1.Department of Mathematical PhysicsUniversity CollegeCorkIreland

Personalised recommendations