Automatic Selection of Sequence Transformations

  • Jean-Paul Delahaye
Part of the Springer Series in Computational Mathematics book series (SSCM, volume 11)


When faced with the great number of various methods for accelerating the convergence of sequences ([3], [4], [6], [18]), and also with the problem of the choice of parameters for some of them (the Richardson process [8] and ρ-algorithm [2]), the user is in a quite difficult position. If some precise information about the behavior of the sequence to be accelerated is known, it is possible to determine the most powerful acceleration method, but even in this case, several possibilities remain. The user can (if he has plenty of time !) try all the methods and choose the best one with the help of some test problems.


Convergent Sequence Automatic Selection Sequence Transformation Richardson Extrapolation Exactness Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bréziérski C. “Accélération de suites à convergence logarithmique” C.R. Acad. Sc. Paris, A 273, 1971, pp.727-730.Google Scholar
  2. [2]
    Brezinski C. “Etudes sur les e et p-algorithmes” Numer. Math., 17, 1971, pp. 153–162.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    Brezinski C. “Accélération de la convergence en analyse numérique” Lecture Notes in Mathematics, 582, Springer-Verlag, Heidelberg, 1977.Google Scholar
  4. [4]
    Brezinski C. “Algorithmes d’accélération de la convergence. Etude numérique” Technip, Paris, 1978.zbMATHGoogle Scholar
  5. [5]
    Brezinski C. “Analyse Numérique discrète” Cours polycopié, Lille, 1978.Google Scholar
  6. [6]
    Brezinski C. “A general extrapolation algorithm” Numer. Math. 35, 1980, pp. 175–187.Google Scholar
  7. [7]
    Brezinski C. “Error control in convergence acceleration processes” I.M.A. J. Num. Anal., to appear.Google Scholar
  8. [8]
    Cordellier F. “Caractérisation des suites que la première étape 0-algorithme transforme en suites constantes” C.R. Acad. Sc. Paris, t 284, 1977, pp. 389–392.MathSciNetzbMATHGoogle Scholar
  9. [9]
    Cordellier F. “Sur la régularité des procédés δ2 d’Aitken et W. de Lubkin“ Padé Approximation and its applications. Lecture Notes in Mathematics, 765, Springer-Verlag, Heidelberg, 1980, pp. 20–35.Google Scholar
  10. [10]
    Delahaye J.P. “Automatic selection of sequence transformations” Math. of Computation 37, 1981, pp. 197–204. 248 Chapter 7. Automatic SelectionGoogle Scholar
  11. [11]
    Delahaye J.P. “Choix automatique entre suites de paramètres dans l’extrapolation de Richardson” Padé Approximations and its applications, Lecture Notes in Mathematics, 888, Springer-Verlag, Heidelberg, 1981, pp. 158–172.Google Scholar
  12. [12]
    Delahaye J.P. “Algorithmes pour suites non convergentes” Numer. Math. 34, 1980, pp. 333–347.MathSciNetzbMATHCrossRefGoogle Scholar
  13. [13]
    Delahaye J.P. and Germain-Bonne B. “Résultats négatifs en accélération de la convergence” Numer. Math. 35, 1980, pp. 443-457.MathSciNetzbMATHCrossRefGoogle Scholar
  14. [14]
    Laurent J.P. “Etudes des procédés d’extrapolation en analyse numérique” Thèse, Grenoble, 1964.Google Scholar
  15. [15]
    Overholt K.J. “Extended Aitken Acceleration” B.I.T. V. 6, 1965, pp. 122–132.MathSciNetGoogle Scholar
  16. [16]
    Richardson L.F. “The deferred approach to the limit” Trans. Phil. Roy. Soc. 226, 1927, pp. 261–299.Google Scholar
  17. [17]
    Shanks D. “Non linear transformations of divergent and slowly convergent sequences” J. Math. Phys. 34, 1955, pp. 1–42.MathSciNetzbMATHGoogle Scholar
  18. [18]
    Wimp J. “Sequence transformations and their applications” Academic Press, New York, 1981.Google Scholar
  19. [19]
    Wynn P. “On a device for computing the em(sn) transformation” MTAC 16, 1956, pp. 91–96.MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Jean-Paul Delahaye
    • 1
  1. 1.Laboratoire d’Informatique Fondamentale de LilleUniversité des Sciences et Techniques de Lille Flandres ArtoisVilleneuve d’Ascq CedexFrance

Personalised recommendations