Skip to main content

Factors Determining the Fate of Organic Chemicals in the Environment: the Role of Bacterial Transformations and Binding to Sediments

  • Chapter
Chemicals in the Aquatic Environment

Part of the book series: Springer Series on Environmental Management ((SSEM))

Summary

Factors determining the bacterial transformation of xenobiotics have been summarized. Both aerobic and anaerobic reactions have been included, and the justification for use of the enrichment methodology presented. Attention has been drawn to important experimental considerations: (i) procedures for quantification of substrates and their metabolites including the significance of adsorption processes; (ii) microbiological procedures with particular reference to problems associated with volatile substrates and anaerobic reactions.

The O-methylation of halogenated phenolic compounds was used as a convenient reaction - for which quantitative data were available - to discuss the significance of the following environmental factors: (i) the effect of co-substrates and the concurrent metabolism procedure; (ii) the effect of substrate concentration and cell density; (iii) quantitative rates of transformation. The results of experiments illustrating salient features of all of these are presented. Attention is specially drawn to important problem areas and unresolved issues including the following: (i) the extrapolation of laboratory experiments to environmental situations; (ii) the complexity of kinetics which rnay be encountered with certain substrates, and the difficulty of calculating specific rates for natural processes due to inherent difficulties in determining cell numbers in natural populations of bacteria; (iii) aspects of metabolism including the specificity of biodegratative reactions, the role of catabolic plasmids and their stability under natural conditions.

An overview of current research in anaerobic reactions is given with particular emphasis on new metabolic reactions and the role of syntrophy in practical applications. Attention is directed to outstanding problems including the following: (i) the stability of consortia and mechanisms for their metabolic dependence; (ii) the substrates occurring under natural conditions and which might plausibly serve as growth substrates for anaerobic bacteria.

A brief note is appended on the role of sediments in determining the environmental fate of xenobiotics and, in a personal summing up, attention is directed to the following aspects which are felt to be of cardinal significance in any environmental hazard assessment: (i) the occurrence and identification of metabolites and the conditions under which they are produced; (ii) the extent to which the initial xenobiotic - or its metabolites - are bound to sediments or soil; (iii) the extent to which pathways elucidated by laboratory experimentation are realized in field situations.

It is finally emphasized that significant progress in solving the outstanding issues will require application of the best - and often most sophisticated - modern techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aelion CM, Swindoll CM, Pfaender FK (1987) Adaptation to and biodegradation of xeno- biotic compounds by microbial communities from a pristine aquifer. Appl Environ Microbiol 53: 2212–2217

    PubMed  CAS  Google Scholar 

  • Alexander M (1975) Environmental and microbiological problems arising from recalcitrant molecules. Microbial Ecol 2: 17–27

    CAS  Google Scholar 

  • Allard A-S, Remberger M, Neilson AH (1985) Bacterial O-methylation of chloroguaiacols: effect of substrate concentration, cell density, and growth conditions. Appl Environ Microbiol 49: 279–288

    PubMed  CAS  Google Scholar 

  • Allard A-S, Remberger M, Neilson AH (1987) Bacterial O-methylation of halogen-substituted phenols. Appl Environ Microbiol 53: 839–845

    PubMed  CAS  Google Scholar 

  • Allard A-S, Remberger M, Viktor T, Neilson AH (1988) Environmental fate of chloroguiacols and chlorocatechols. 2nd IAWPRC Symp Forest industry wastewaters. Water Sci Technol 20 (2): 131–141

    CAS  Google Scholar 

  • Andreoni V, Bestetti G (1986) Comparative analysis of different Pseudomonas strains that degrade cinnamic acid. Appl Environ Microbiol 52: 930–934

    PubMed  CAS  Google Scholar 

  • Andreoni V, Bestetti G (1988) Ferulic acid degradation encoded by a catabolic plasmid. FEMS Microbiol Ecol 53:129–132

    CAS  Google Scholar 

  • Apajalahti JHA, Salkinoja-Salonen MS (1987 a) Dechlorination and para-hydroxylation of polychlorinated phenols by Rhodococcus chlorophenolicus. J Bacteriol 169: 675–681

    PubMed  CAS  Google Scholar 

  • Apajalahti JHA Salkinoja-Salonen MS (1987 b) Complete dechlorination of tetrachlorohy- droquinone by cell extracts of pentachlorophenol-induced Rhodococcus chlorophenolicus. J Bacteriol 169: 5125–5130

    PubMed  CAS  Google Scholar 

  • Arjmand M, Sandermann H (1985) Mineralization of chloroaniline/lignin conjugates and of free chloroanilines by the white rot fungus Phanerochaete chrysosporium. J Agric Food Chem 33:1055–1060

    CAS  Google Scholar 

  • Bailey AM, Coffey MD (1985) Biodegradation of Metalaxyl in avocado soils. Phytopathology 75: 35–137

    Google Scholar 

  • Bailey AM, Coffey MD (1986) Characterization of microorganisms involved in accelerated biodegradation of metalaxyl and metolachlor in soils. Can J Microbiol 32: 562–569

    CAS  Google Scholar 

  • Bak F, Widdel F (1986 a) Anaerobic degradation of indolic compounds by sulfate-reducing enrichment cultures, and description of Desulfobacterium indolicum gen nov, sp nov. Arch Microbiol 146:170–176

    CAS  Google Scholar 

  • Bak F, Widdel F (1986 b) Anaerobic degradation of phenol derivatives byDesulfobacterium phenolicum sp nov. Arch Microbiol 146: 177–180

    CAS  Google Scholar 

  • Barik S, Brulla WJ, Bryant MP (1985) PA-1, a versatile anaerobe obtained in pure culture, catabolizes benzenoids and other compounds in syntrophy with hydrogeno trophs, and P-2 plus Wolinella sp degrades benzenoids. Appl Environ Microbiol 50: 304–310

    PubMed  CAS  Google Scholar 

  • Barton MR, Crawford RL (1988) Novel biotransformations of 4-chlorobiphenyl by a Pseudomonas sp. Appl Environ Microbiol 54: 594–595

    PubMed  CAS  Google Scholar 

  • Bedard DL, Haberl ML, May RJ, Brennan MJ (1987) Evidence for novel mechanisms of polychlorinated biphenyl metabolism in Alcaligenes eutrophus H850. Appl Environ Microbiol 53: 1103–1112

    PubMed  CAS  Google Scholar 

  • Berry DF, Francis AJ, Bollag J-M (1987 a) Microbial metabolism of homocyclic and heterocyclic aromatic compounds under anaerobic conditions. Microbiol Rev 51: 43–59

    PubMed  CAS  Google Scholar 

  • Berry DF, Madsen EL, Bollag J-M (1987b) Conversion of indole to oxindole under metha- nogenic conditions. Appl Environ Microbiol 53:180–182

    PubMed  CAS  Google Scholar 

  • Beuscher HU, Andreesen JR (1984) Eubacterium angustum sp nov, a gram-positive anaerobic, non-sporeforming, obligate purine fermenting organism. Arch Microbiol 140: 2–8

    CAS  Google Scholar 

  • Blok J, de Morsier A, Gerike P, Reynolds L, Wellens H (1985) Harmonization of ready biode- gradability tests. Chemosphere 14:1805–1820

    CAS  Google Scholar 

  • Bollag J-M, Loll M J (1983) Incorporation of xenobiotics into soil humus. Experientia 39: 1221–1230

    PubMed  CAS  Google Scholar 

  • Bosma TNP, van der Meer JR, Schraa G, Tros ME, Zehnder AJB (1988) Reductive dechlorination of all trichloro- and dichlorobenzene isomers. FEMS Microbiol Lett 53: 223- 229

    CAS  Google Scholar 

  • Chesney RH, Sollitti P, Rubin HE (1985) Incorporation of phenol carbon at trace concentrations by phenol-mineralizing microorganisms in fresh water. Appl Environ Microbiol 49: 15–18

    PubMed  CAS  Google Scholar 

  • Crawford RL, Olson PE, Frick TD (1979) Catabolism of 5-chlorosalicylate by a Bacillus isolated from the Mississippi River. Appl Environ Microbiol 38: 379–384

    PubMed  CAS  Google Scholar 

  • De Bont JAM, Peck MP (1980) Metabolism of acetylene by Rhodococcus A1. Arch Microbiol 127: 99–104

    Google Scholar 

  • De Bont JAM, Primrose SB, Collins MD, Jones D (1980) Chemical studies on some bacteria which utilize gaseous unsaturated hydrocarbons. J Gen Microbiol 117: 97–102

    Google Scholar 

  • DeMoll E, Tsai L (1986) Utilization of purines or pyrimidines as the sole nitrogen source by Methanococcus vannielii. J Bacteriol 167: 681–684

    PubMed  CAS  Google Scholar 

  • De Morsier A, Blok J, Gerike P, Reynolds L, Wellens H, Bontinck WJ (1987) Biodegradation tests for poorly-soluble compounds. Chemosphere 16: 833–847

    Google Scholar 

  • Devanas MA, Rafaeli-Eshkol D, Stotsky G (1986) Survival of plasmid-containing strains of Escherichia coli in soil: effect of plasmid size and nutrients on survival of hosts and maintenance of plasmids. Curr Microbiol 13: 269–277

    Google Scholar 

  • Di Toro DM, Jeris JS, Ciarcia D (1985) Diffusion and partitioning of hexachlorobiphenyl in sediments. Environ Sci Technol 19: 1169–1176

    Google Scholar 

  • Droop MR (1968) Vitamin B12 and marine ecology IV The kinetics of uptake, growth and inhibition in Monochrysis lutheri. J Mar Biol Assoc UK 48: 689–733

    CAS  Google Scholar 

  • Elsden SR, Hilton MG, Waller JM (1976) The end products of the metabolism of aromatic acids by Clostridia. Arch Microbiol 107: 283–288

    PubMed  CAS  Google Scholar 

  • Feitelson JS, Malpartida F, Hopwood DA (1985) Genetic and biochemical characterization of the red gene cluster of Streptomyces coelicolor A3(2). J Gen Microbiol 131: 2431–2441

    PubMed  CAS  Google Scholar 

  • Gälli R, Leisinger T (1988) Plasmid analysis and cloning of the dichloromethane- utilizing genes of Methylobacterium sp. DM4. J Gen Microbiol 134: 943–952

    PubMed  Google Scholar 

  • Garbarini DR, Lion LW (1986) Influence of the nature of soil organics on the sorption of toluene and trichloroethylene. Environ Sci Technol 20:1263–1269

    CAS  Google Scholar 

  • Gauthier TD, Seitz WR, Grant CL (1987) Effects of structural and compositional variations of dissolved humic materials on pyrene Koc values. Environ Sci Technol 21: 243–248

    CAS  Google Scholar 

  • Gerike P, Fischer WK (1981) A correlation study of biodegradability determinations with various chemicals in various tests II. Ecotoxicol Environ Saf 45: 45–55

    Google Scholar 

  • Grbic-Galic D (1986) O-demethylation, dehydroxylation, ring-reduction and cleavage of aromatic substrates by Enterobacteriaceae under anaerobic conditions. J Appl Bacteriol 61: 491–47

    PubMed  CAS  Google Scholar 

  • Häggblom MM, Apajalahti JHA, Salkinoja-Salonen MS (1986) Metabolism of chloroguaia- cols by Rhodococcus chlorophenolicus. Appl Microbiol Biotechnol 24: 397–404

    Google Scholar 

  • Häggblom MM, Apajalahti JHA, Salkinoja-Salonen MS (1988). Hydroxylation and dechlorination of chlorinated guaiacols and syringols by Rhodococcus chlorophenolicus. Appl Environ Microbiol 54: 683–687

    PubMed  Google Scholar 

  • Hand VC, Williams GK (1987) Structure-activity relationships for sorption of linear alkylben- zenesulfonates. Environ Sci Technol 21: 370–373

    CAS  Google Scholar 

  • Heiman AS, Cooper WT (1987) Solid-state 13C nuclear magnetic resonance spectroscopy of simultaneously metabolized acetate and phenol in a soil Pseudomonas sp. Appl Environ Microbiol 53:156–162

    PubMed  CAS  Google Scholar 

  • Heitkamp MA, Cerniglia CE (1988) Mineralization of polycyclic aromatic hydrocarbons by a bacterium isolated from sediment below an oil field. Appl Environ Microbiol 54: 1612–1614

    PubMed  CAS  Google Scholar 

  • Heitkamp MA, Freeman JA, Cerniglia CE (1987) Naphthalene biodegradation in environmental microcosms: estimates of degradation rates and characterization of metabolites. Appl Environ Microbiol 53:129–136

    PubMed  CAS  Google Scholar 

  • Herbes SE, Schwall LR (1978) Microbial transformation of polycyclic aromatic hydrocarbons in pristine and petroleum-contaminated sediments. Appl Environ Microbiol 35: 306–316

    PubMed  CAS  Google Scholar 

  • Holder U, Schmidt D-E, Stupperich E, Fuchs G (1985) Autotrophic synthesis of activated acetic acid from two CO2 inMethanobacterium thermoautotrophicum III Evidence for common one-carbon precursor pool and the role of corrinoid. Arch Microbiol 141: 229–238

    CAS  Google Scholar 

  • Howard PH (1985) Determining “real world” biodegradation rates. Environ Toxicol Chem 4:129–130

    Google Scholar 

  • Howard PH, Banergee S (1984) Interpreting results from biodegradabilily tests of chemicals in soil and water. Environ Toxicol Chem 3: 551–562

    CAS  Google Scholar 

  • Hyman MR, Sansome-Smith AW, Shears JH, Wood PM (1985) A kinetic study of benzene oxidation to phenol by whole cells of Nitrosomonas europaea and evidence for the further oxidation of phenol to hydroquinone. Arch Microbiol 143: 302–306

    CAS  Google Scholar 

  • Imhoff D, Andreesen JR (1979) Nicotinic acid hydroxylase from Closiridium barkerii : selenium-dependent formation of active enzyme. FEMS Microbiol Letters 5 :155–158

    CAS  Google Scholar 

  • Imhoff-Stuckle D, Pfennig N (1983) Isolation and characterization of a nicotinic acid-degrading sulfate-reducing bacterium,Desulfococcus niacini sp nov. Arch Microbiol 136 :194–198

    CAS  Google Scholar 

  • Isaacson PJ, Frink CR (1984) Nonreversible sorption of phenolic compounds by sediment fractions : the role of sediment organic matter. Environ Sci Technol 18 : 43–48

    CAS  Google Scholar 

  • Jensen S, Renberg L, Reutergårdh L (1977) Residue analysis of sediment and sewage sludge for organochlorines in the presence of elemental sulfur. Anal Chem 49 : 316–318

    PubMed  CAS  Google Scholar 

  • Jeter RM, IngrahamJL (1981) The denitrifying prokaryotes. In: Starr MP, Stolp H, Trüper HG, Schlegel HG (eds) The prokaryotes. Springer, Berlin Heidelberg New York, pp 913–925

    Google Scholar 

  • Jones SH, Alexander M (1986) Kinetics of mineralization of phenols in lake water. App Environ Microbiol 51 : 891–897

    CAS  Google Scholar 

  • Jüttner F, Henatsch (1986) Anoxic hypolimnion is a significant source of biogenic toluene. Nature (London) 323 : 797–799

    Google Scholar 

  • Kaminsky R, Hites RA (1984) Octachlorostyrene in Lake Ontario:sources and fates. Environ Sci Technol 18 : 275–279

    CAS  Google Scholar 

  • Karickhoff SW (1984) Organic pollutant sorption in aquatic systems. J Am Soc Civil Eng J Hydraul Div 100 : 707–735

    Google Scholar 

  • Keshavarz T, Lilly MD, Clarke PC (1985) Stability of a catabolic plasmid in continuous culture. J Gen Microbiol 131 :1193–1203

    CAS  Google Scholar 

  • Krone CA,Burrows DG, Brown DW, Robisch PA, Friedman AJ Malins DC (1986) Nitrogen- containing aromatic compounds in sediments from a polluted harbor in Puget Sound. Environ Sci Technol 20 :1144–1150

    CAS  Google Scholar 

  • Krumholz LR.Bryant MP (1988) Characterization of the pyrogallol-phloroglucinol isomerase of Eubacterium oxidoreducens. J Bacteriol 170 : 2472–2479

    PubMed  CAS  Google Scholar 

  • Krumholz LR Crawford RL, Hemling ME, Bryant MP (1987) Metabolism of gallate and phloroglucinol inEubacterium oxidoreducens via 3-hydroxy-5-oxohexanoate.J Bacteriol 169 : 1886–1890

    PubMed  CAS  Google Scholar 

  • Landrum PF Reinhold MD Nihart SA Eadie BJ (1985) Predicting the bioavailability of organic xenobiotics to Pontoporeia hoyi in the presence of humic and fulvic materials and dissolved organic matter. Environ Toxicol Chem 4:459–467

    CAS  Google Scholar 

  • Lee PW (1985) Fate of fenvalerate (pydrin insecticide) in the soil environment. J Agric Food Chem 33 :993–998

    CAS  Google Scholar 

  • Lewis DL, Hodson RE, Freeman LF III (1985) Multiphase kinetics for transformation of methyl parathion by Flavobacterium species. Appl Environ Microbiol 50 : 553–557

    PubMed  CAS  Google Scholar 

  • Lewis DL, Kollig HP, Hodson RE (1986) Nutrient limitation and adaptation of microbial populations to chemical transformations. Appl Environ Microbiol 51 : 598–603

    PubMed  CAS  Google Scholar 

  • Liu D, Strachan WJ, Thomson K, Kwasniewska K (1981) Determination of the biodegradabil- ity of organic compounds. Environ Sci Technol 15 : 788–792

    CAS  Google Scholar 

  • Lovley DR, Phillips EJP (1988). Novel mode of microbial energy metabolism : organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol 54 : 1472–1480

    PubMed  CAS  Google Scholar 

  • Madhun YA, Young JL, Freed VH (1986) Binding of herbicides by water-soluble organic materials from soil. J Environ Qual 15 : 64–68

    CAS  Google Scholar 

  • Maki AW, Dickson KL, Cairns J, Jr (1981) Biotransformation and fate of chemicals in the aquatic environment. Am Soc Microbiol, Washington DC

    Google Scholar 

  • Malcolm RL, MacCarthy P (1986) Limitations in the use of commercial humic acids in water and soil research. Environ Sci Technol 20 : 904–911

    CAS  Google Scholar 

  • McCarthy JF, Jimenez BD (1985) Interactions between poly cyclic aromatic hydrocarbons and dissolved humic material : binding and dissociation. Environ Sci Technol 19 : 1072- 1076

    CAS  Google Scholar 

  • Michaels GB, Lewis DL (1986) Microbial transformation rates of azo and triphenyl methane dyes. Environ Toxicol Chem 5 :161–166

    CAS  Google Scholar 

  • Mortlock RP (1982) Metabolic acquision through laboratory selection. Annu Rev Microbiol 34 : 37–66

    Google Scholar 

  • Neilson AH (1980 a) Isolation and characterization of bacteria from the Baltic Sea. J Appl Bacterid 49 : 19–213

    Google Scholar 

  • Neilson AH (1980 b) Isolation and characterization of bacteria from the Swedish west coast. J Appl Bacteriol 49 : 215–223

    CAS  Google Scholar 

  • Neilson AH (1988) Experimental procedures for environmental hazard assessment In: Schmidtke NW (ed) Toxic contamination in large lakes, Vol 1 Chronic effects of toxic contaminants in large lakes. Lewis, Chelsea, Mich, pp 285–313

    Google Scholar 

  • Neilson AH, Allard A-S, Hynning P-Å, Remberger M, Landner L (1983) Bacterial methyl- ation of chlorinated phenols and guaiacols : formation of veratroles from guaiacols and high molecular weight chlorinated lignin. Appl Environ Microbiol 45 : 774–783

    PubMed  CAS  Google Scholar 

  • Neilson AH, Allard A-S, Reiland S, Remberger M, Tärnholm A, Viktor T, Landner L (1984) Tri- and tetra-chloroveratrole, metabolites produced by bacterial O-methylation of tri- and tetra- chloroguaiacol : an assessment of their bioconcentration pottial and their effects on fish reproduction. Can J Fish Aquat Sci 41 : 1502- 1512

    CAS  Google Scholar 

  • Neilson AH, Allard A-S, Remberger M (1985) Biodegradation and transformation of recalcitrant compounds. In: Hutzinger O (ed) Handbook of environmental chemistry, vol 2/C. Springer, Berlin Heidelberg New York Tokyo, pp 29–86

    Google Scholar 

  • Neilson AH, Allard A-S, Lindgren C, Remberger M (1987) Transformation of chloroguaia- cols, chloroveratroles, and chlorocatechols by stable consortia of anaerobic bacteria. Appl Environ Microbiol 53 : 2511–2519

    PubMed  CAS  Google Scholar 

  • Neilson AH, Lindgren C, Hynning P-Å, Remberger M (1988 a) Methylation of halogenated phenols and thiophenols by cell extracts of Gram-positive and Gram-negative bacteria. Appl Environ Microbiol 54 : 524–530

    PubMed  CAS  Google Scholar 

  • Neilson AH, Allard A-S, Hynning P-Å, Remberger M (1988 b) Transformations of halogenated aromatic aldehydes by metabolically stable anaerobic enrichment cultures. Appl Environ Microbiol 55 (in press)

    Google Scholar 

  • Nelson MJK, Montgomery SO, Mahaffey WR, Pritchard PH (1987) Biodegradation of tri- chloroethylene and involvement of an aromatic degradative pathway. Appl Environ Microbiol 53 : 949–954

    PubMed  CAS  Google Scholar 

  • Novick NJ, Alexander M (1985) Cometabolism of low concentrations of propachlor, alachlor and cycloate in sewage and lake water. Appl Environ Microbiol 49 : 737–743

    PubMed  CAS  Google Scholar 

  • Oliver BG (1985) Desorption of chlorinated hydrocarbons from spiked and anthropogenically contaminated sediments. Chemosphere 14 : 1087–1106

    CAS  Google Scholar 

  • Ou L, Edvardsson KS, Rao PSC (1985) Aerobic and anaerobic degradation of Aldicarb in soils. J Agric Food Chem 53 : 72–78

    Google Scholar 

  • Painter HA, King EF (1985) Biodegradation of water-soluble compounds. In:Hutzinger O (ed) Handbook of environmental chemistry vol 2/C. Springer, Berlin Heidelberg New York Tokyo, pp 87–120

    Google Scholar 

  • Paris DF, Rogers JE (1986) Kinetic concepts for measuring microbial rate constants : effects of nutrients on rate constants. Appl Environ Microbiol 51 : 221–225

    PubMed  CAS  Google Scholar 

  • Paris DF, Wolfe NL (1987) Relationship between properties of a series of anilines and their transformation by bacteria. Appl Environ Microbiol 53 : 911–916

    PubMed  CAS  Google Scholar 

  • Paris DF, Wolfe NL, Steen WC (1982) Structure-activity relationships in microbial transformation of phenols. Appl Environ Microbiol 44 :153–158

    PubMed  CAS  Google Scholar 

  • Patterson DG, Holler JS, Lapenza CR, Jr. Alexander LR, Groce DF, OConner RC, Smith SJ, Liddle JA, Needam LL (1986) High-resolution gas chromatographic/ high-resolu tion mass spectrometric analysis of human adipose tissue for 2,3,7,8-tetrachloro-p-dioxin. Anal Chem 58 : 705–713

    PubMed  CAS  Google Scholar 

  • Pfennig N, Widdel F, Trüper HG, (1981) The dissimilatory sulfate-reducing bacteria In: Starr, MP, Stolp H, Trüper HG, Ballows A, Schlegel HG (eds) The prokarvotes. Springer, Berlin Heidelberg New York pp 941–947

    Google Scholar 

  • Pipke R, Schulz A, Amrhein N (1987) Uptake of glyphosate by an Arthrobacter sp. Appl Environ Microbiol 53 : 974–978

    PubMed  CAS  Google Scholar 

  • Pons J-L, Rimbault A, Darbord JC, Leluan G (1984) Biosynthese de toluene chez Clostridiumaerofoetidum souche WS. Ann Microbiol (Inst Pasteur) 135 B: 219–222

    Google Scholar 

  • Racke KD, Coats JR (1987) Enhanced degradation of Isofenphos by soil microorganisms. J Agric Food Chem 35 : 94–99

    CAS  Google Scholar 

  • Racke KD, Lichtenstein EP (1985) Effects of soil micro-organisms on the release of bound 14C residues from soils previously treated with 14C Parathion. J Agric Food Chem 33 : 938–943

    CAS  Google Scholar 

  • Remberger M, Allard A-S, Neilson AH (1986) Biotransformations of chloroguaiacols, chloro- catechols and chloroveratroles in sediments. Appl Environ Microbiol 51 : 552–558

    PubMed  CAS  Google Scholar 

  • Remberger M, Hynning P-Å, Neilson AH (1988) Comparison of procedures for recovering chloroguaiacols and chlorocatechols from contaminated sediments. Environ Toxicol Chem 7 (in press)

    Google Scholar 

  • Rosenberg H, La Nauze JM (1967) The metabolism of phos-phonates by microorganisms The transport of aminoethyl-phosphonic acid in Bacillus cereus. Biochim Biophys Acta 141 : 79–80

    PubMed  CAS  Google Scholar 

  • Roy F, Samain E, Dubourgier HC, Albagnac G (1986)Syntrophomonas sapovorans sp nov, a new obligately proton reducing anaerobe oxidizing saturated and unsaturated long chain fatty acids. Arch Microbiol 145 :142–147

    CAS  Google Scholar 

  • Rubin HE, Schmidt S (1985) Growth of phenol-mineralizing microorganisms in fresh water.Appl Environ Microbiol 49 : 11–14

    PubMed  CAS  Google Scholar 

  • Rubio MA, Engesser K-H, Knackmuss H-J (1986) Microbial metabolism of chlorosalicylates :accelerated evolution by natural genetic exchange. Arch Microbiol 145 :116–122

    PubMed  CAS  Google Scholar 

  • Rühlemann M, Ziegler K, Stupperich E, Fuchs G (1985) Detection of acetyl coenzyme A as an early CO2 assimilation intermediate inMethanobacterium. Arch Microbiol 141 :399- 406

    Google Scholar 

  • Samain EG, Albagnac G, Dubourguier HC (1986) Initial steps of catabolism of trihydroxy- benzenes in Pelobacter acidigallici. Arch Microbiol 144 : 242–244

    CAS  Google Scholar 

  • Sawhney BL, PignatelloJ, Steinberg SM (1988) Determination of 1,2-dibromoethane (EDB) in field soils : implications for volatile compounds. J Environ Qual 17 :149–152

    CAS  Google Scholar 

  • Sayler GS, Shields MS, Tedford ET, Breen A, Hooper SW, Sirotkin KM, Davis JW (1985) Application of DNA-DNA colony hybridization to the detection of catabolic genotypes in environmental samples. Appl Environ Microbiol 49 :1295–1303

    PubMed  CAS  Google Scholar 

  • Schauder R, Eikmanns B, Thauer RK, Widdel F, Fuchs G (1986) Acetate oxidation to C02 in anaerobic bacteria via a novel pathway not involving reactions of the citric acid cycle. Arch Microbiol 1145 : 162–172

    Google Scholar 

  • Schiefer-Ullrich H, Andreesen JR (1985)Peptostreptococcus barnesae sp nov, a gram- positive, anaerobic, obligately purine utilizing coccus from chicken feces. Mch Microbiol 143 : 26–31

    CAS  Google Scholar 

  • Schink B (1985 a) Degradation of unsaturated hydrocarbons by methanogenic enrichment cultures. FEMS Microbiol Ecol 31 : 69–77

    CAS  Google Scholar 

  • Schink B (1985 b) Fermentation of acetylene by an obligate anaerobe, Pelobacter acetylenicus sp nov. Arch Microbiol 142 : 295–301

    CAS  Google Scholar 

  • Schmidt SK, Simkins S, Alexander M (1985) Models for the kinetics of biodégradation of organic compounds not supporting growth. Appl Environ Microbiol 50 : 323–331

    PubMed  CAS  Google Scholar 

  • Schwein U, Schmidt E, Knackmuss H J, Reineke W (1988). Degradation of chlorosubstituted aromatic compounds by Pseudomonas sp. strain B13 : fate of 3,5-dichlorocatechol. Arch Microbiol 150 :78–84

    Google Scholar 

  • Seitz H-J, Cypionka H (1986) Chemolithotrophic growth of Desulfovibrio desulfuricans with hydrogen coupled to ammonification of nitrate or nitrite. Arch Microbiol 146 :63–67

    CAS  Google Scholar 

  • Shimp R, Pfaender FP (1985) Influence of naturally occurring humic acids on biodegradation of monosubstituted phenols by aquatic bacteria. Appl Environ Micro biol 49 : 402–407

    CAS  Google Scholar 

  • Simkins S, Mukherjee R, Alexander M (1986) Two approaches to modeling kinetics of biodegradation by growing cells and application to a two-compartment model for mineralization kinetics in sewage. Appl Environ Microbiol 51 :1153–1160

    PubMed  CAS  Google Scholar 

  • Singer ME, Finnerty WR (1985 a) Fatty aldehyde dehydrogenases in Acinetobacter sp strain HOl-N : role in hexadecane and hexadecanol metabolism. J Bacteriol 164 :1011–1016

    PubMed  CAS  Google Scholar 

  • Singer ME, Finnerty WR (1985 b) Alcohol dehydrogenases in Acinetobacter sp. strain HOl-N role in hexadecane and hexadecanol metabolism. J Bacteriol 164 : 1017- 1024

    PubMed  CAS  Google Scholar 

  • Smith AE (1985) Persistence and transformation of the herbicides 14C Fenoxaprop- ethyl and 14C Fenthiaprop-ethyl in two prairie soils under laboratory and field conditions. J Agric Food Chem 33 : 483–488

    CAS  Google Scholar 

  • Sowers KR Ferry JG (1985) Trace metals and vitamin requirements of Methanococcoides methylutens grown with trimethylamine. Arch Microbiol 142 :148–151

    CAS  Google Scholar 

  • Spain JC, Gibson DT (1988) Oxidation of substituted phenols by Pseudomonas putida F1 and Pseudomonas sp. strain JS6. Appl Environ Microbiol 54 :1399–1404

    PubMed  CAS  Google Scholar 

  • Staley JT, Konopka A (1985) Measurements of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Ann Rev Microbiol 39 : 321–346

    CAS  Google Scholar 

  • Stalker DM, McBride KE (1987) Cloning and expression in Escherichia coli of a Klebsiella ozenae plasmid-borne gene encoding a nitrilase specific for the herbicide Bromoxynil. JBacteriol 169 : 955–960

    CAS  Google Scholar 

  • Stanlake GJ, Finn RK (1982) Isolation and characterization of a pentachlorophenol- degrading bacterium. Appl Environ Microbiol 44 :1421–1427

    PubMed  CAS  Google Scholar 

  • Steen WC, Vasilyeva GK, Anan’eva ND (1986) Microbial degradation of Propanil in aquatic systems. Chemosphere 15 : 917–922

    CAS  Google Scholar 

  • Stieb M, Schink B (1985) Anaerobic oxidation of fatty acids by Clostridium bryantii sp. nov, a sporeforming obligately syntrophic bacterium. Arch Microbiol 140 : 387–390

    CAS  Google Scholar 

  • Stieb M, Schink B (1986) Anaerobic degradation of iso-valerate by a defined methanogenic coculture. Arch Microbiol 144 : 291–295

    CAS  Google Scholar 

  • Subba-Rao RV, Alexander M (1985) Bacterial and fungal cometabolism of 1,1,1-trichloro- 2,2-bis (4-chlorophenyl)ethane (DDT) and its breakdown products. Appl Environ Microbiol 49 : 50–516

    Google Scholar 

  • Swindoll CM, Aelion CM, Dobbins DC, Jiang O, Long SC, Pfaender FK (1988) Aerobic biodegradation of natural and xenobiotic organic compounds by subsurface microbial communities. Environ Toxicol Chem 7 : 291–299

    CAS  Google Scholar 

  • Szewzyk R, Pfennig N (1987) Complete oxidation of catechol by the strictly anaerobic sulfate-reducing Desulfobacterium catecholicum sp nov. Arch Microbiol 147 :163–168

    CAS  Google Scholar 

  • Tam AC, Behki RM, Khan SU (1987) Isolation and characterization of an S-ethyl-N,N-dipro- pylthiocarbamate-degradingArthrobacter strain and evidence for plasmid- associated S-ethyl- N,N-dipropylthiocarbamate degradation. Appl Environ Microbiol 53 : 1088- 103

    PubMed  CAS  Google Scholar 

  • Thiele J, Muller R, Lingens F (1987) Initial characterization of 4-chlorobenzoate dehalogenase from Pseudomonas sp. CBS3. FEMS Microbiol Lett 41 :115–119

    CAS  Google Scholar 

  • Tsukamura M, Yano I (1985)Rhodococcus sputi sp nov, nom rev, and Rhodococcus aurantiacus sp nov nom rev. Int J System Bacteriol 35 : 364–368

    Google Scholar 

  • Vandenbergh PA, Olsen RH, Colaruotolo JE (1981) Isolation and genetic characterization of bacteria that degrade chloroaromatic compounds. Appl Environ Microbiol 42 : 737–739

    PubMed  CAS  Google Scholar 

  • Van den Tweel WJJ, Kok JB, de Bont JAM (1987) Reductive dechlorination of 2,4-dichloro- benzoate to 4-chlorobenzoate and hydrolytic dehalogenation of 4-chloro-, 4-bromo-, and 4-iodobenzoate by Alcaligenes denitrificans NTB-1. Appl Environ Microbiol 53 : 810–815

    PubMed  Google Scholar 

  • Varanasi U, Reichert WL, Stein JE, Brown DW, Sanborn HR (1985) Bioavailability and biotransformation of aromatic hydrocarbons in benthic organisms exposed to sediment from an urban estuary. Environ Sci Technol 19 : 836–841

    CAS  Google Scholar 

  • Vogel TM, Grbic-Galic D (1986) Incorporation of oxygen from water into toluene and benzene during anaerobic fermentative transformation. Appl Environ Microbiol 52 : 200–202

    PubMed  CAS  Google Scholar 

  • Voice TC, Weber WJ, Jr (1985) Sorbent concentration effects in liquid!/solid partitioning. Environ Sci Technol 19 : 789–796

    CAS  Google Scholar 

  • Wackett LP, Hartweig EA, King JA, Orme-Johnson WH, Walsh CT (1987 a) Electron microscopy of nickel-containing methanogenic enzymes : methyl reductase and F420-reducing hydrogenase. J Bacteriol 169 : 718–727

    PubMed  CAS  Google Scholar 

  • Wackett LP, Wanner BL, Venditti CP, Walsh CT (1987 b) Involvement of the phosphate regu- lon and the psiD locus in carbon-phosphorus lyase activity of Escherichia coli K-12. J Bacteriol 169 :1753–1756

    PubMed  CAS  Google Scholar 

  • Wagner R, Andreesen JR (1987) Accumulation and incorporation of 185W-tungsten into proteins of Clostridium acidi-urici and Clostridium cylindrosporum. Arch Microbiol 147 : 295–299

    CAS  Google Scholar 

  • Wang Y, Madsen EL, Alexander M (1985) Microbial degradation by mi neralization or come- tabolism determined by chemical concentration and environment. J Agric Food Chem 33 : 495–499

    CAS  Google Scholar 

  • Westall JC, Leuenberger C, Schwarzenbach RP (1985) Influence of pH and ionic strength on the aqueous-nonaqueous distribution of chlorinated phenols. Environ Sci Technol 19 : 193–198

    CAS  Google Scholar 

  • Westcott ND, Worobey BL (1985) Novel solvent extraction of lindane from soil. J Agric Food Chem 33 : 58–60

    CAS  Google Scholar 

  • White DC (1983) Analysis of microorganisms in terms of quantity and activity in natural environments. Symp Soc Gen Microbiol 34 : 37–66

    Google Scholar 

  • Wu S, Gschwend PM (1986) Sorption kinetics of hydrophobic organic compounds to natural sediments and soils. Environ Sci Technol 20 : 717–725

    CAS  Google Scholar 

  • Xie T, Abrahamsson K, Fogelqvist E, Josefsson B (1986) Distribution of chlorophenols in a marine environment. Environ Sci Technol 20 : 457–463

    PubMed  CAS  Google Scholar 

  • Yokoyama MT, Carlson JR (1974) Dissimilation of tryptophan and related indolic compounds by ruminal microorganisms in vitro. Appl Microbiol 27 : 540–548

    PubMed  CAS  Google Scholar 

  • Yost EC, Anderson MA (1984) Absence of phenol adsorption on goethite. Environ Sci Technol 18 : 101–106

    CAS  Google Scholar 

  • Zellner G, Alten C, Stackebrandt E, de Macario EC, Winter J (1987) Isolation and characterization of Methanocorpusculum parvum, gen nov, spec nov, a new tungsten-requiring, cocoid methanogen. Arch Microbiol 147 : 13–20

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Neilson, A.H. (1989). Factors Determining the Fate of Organic Chemicals in the Environment: the Role of Bacterial Transformations and Binding to Sediments. In: Landner, L. (eds) Chemicals in the Aquatic Environment. Springer Series on Environmental Management. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61334-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61334-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64796-3

  • Online ISBN: 978-3-642-61334-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics