Skip to main content

Community Testing, Microcosm and Mesocosm Experiments: Ecotoxicological Tools with High Ecological Realism

  • Chapter
Chemicals in the Aquatic Environment

Summary

The aim of an ecotoxicological test is to provide information on the potential impact of a chemical on an ecosystem before it has caused any damage to this ecosystem. After a discussion of some of the shortcomings of conventional, short-term, single-species laboratory tests as predictive tools in ecotoxicology, a brief overview is given of current approaches to the design of multi-species test systems used either in short-term or in long-term studies of fate and effects of chemicals in the aquatic environment. A detailed account is given of the advantages and disadvantages of a few strategies which have been thoroughly investigated in the ESTHER Program: (a) excised natural communities of periphyton and phytoplankton, (b) laboratory-scale enclosures of marine profundal-zone benthic communities (microcosms), (c) large land-based enclosures of marine littoral-zone ecosystems (mesocosms), and (d) limnic pelagic and benthic in situ enclosures (limnocorrals).

The basic idea of the model ecosystem approach is to mimic the mother system so closely that the ecosystem response to a potential stress is duplicated by and can be observed in the model system. However, a model can never be identical to the real world with regard to all significant properties (e.g., size, time scale, flow conditions, complexity, composition, prehistory) and, therefore, model ecosystems must be approximations of the mother system. Mesocosms, microcosms and excised natural communities do not differ in this respect. The crucial point in designing a model system may not be to maximize the realism, but rather to make sure that ecologically relevant information can be obtained. It is concluded that the two main approaches to model ecosystem testing are both useful but for somewhat different purposes: the “whole ecosystem” or mesocosm approach when high degree of ecological realism is needed in long-term studies of both fate and effects of a pollutant; the excised community or microcosm approach when high flexibility, simplicity and high test capacity are required, e. g., for explanatory studies of the mode of action of a pollutant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ankar S, Elmgren R (1976) The benthic macro and meiofauna of the Askö-Landsort area (Northern Baltic Proper). A stratified random sampling survey. Contrib Askö Lab Univ Stockholm 11:115 pp

    Google Scholar 

  • Blanck H (1984) Species dependent variation among aquatic organisms in their sensitivity to chemicals. Ecol Bull 36:107–119

    Google Scholar 

  • Blanck H (1985) A simple, community level, ecotoxicological test system using samples of periphyton. Hydrobiologia 124: 251–261

    Article  Google Scholar 

  • Blanck H, Wängberg S-Å (1988 a) Induced community tolerance in marine periphyton established under arsenate stress. Can J Fish Aquat Sci 45:1816–1819

    Article  Google Scholar 

  • Blanck H, Wängberg S-Å (1988 b) The validity of an exotoxicological test system. Short-term and long-term effects of arsenate on marine periphyton communities in laboratory systems. Can J Fish Aquat Sci 45: 1807–1815

    Article  CAS  Google Scholar 

  • Blanck H, Wängberg S-Å, Molander S (1988) Pollution-induced community tolerance - a new ecotoxicological tool. In: Cairns JJr, Pratt J P (eds) Functional testing of aquatic biota for estimating hazards of chemicals. ASTM STP 988, Am Soc Test Mat, Philadelphia, pp 219–230

    Chapter  Google Scholar 

  • Blomqvist P, Heyman U (1988) Effects of arsenate additions to pelagic mesocosms on phyto-plankton biomass and composition. Limnologica (in press)

    Google Scholar 

  • Bokn T, Bakke T, Kirkerud L (1981) Gruntvannssamfund i betongbassenger - et redskap til studier av oljeforurrensning. Oljeföroreningar i kustnära områden. Gothenburg, Nov 30. - Dec 1., 1981

    Google Scholar 

  • Cederwall H (1977) Annual macrofauna production of a soft bottom in the Northern Baltic Proper. In: Keegan B F, Oceidigh P, BoadenPJS (eds) Biology of benthic organisms. Pergamon, New York, pp 155–164

    Google Scholar 

  • Dickson K L (1982) Research needs in aquatic toxicology and hazard assessment: A sojourner’s perspective. In: Pearson J G, Foster R B, Bishop W E (eds) Aquatic toxicology and hazard assessment. ASTM STP 766. Am Soc Test Mat, Philadelphia, pp 9–14

    Chapter  Google Scholar 

  • Elmgren R (1973) Methods of sampling sublittoral soft bottom meiofauna. Oikos Suppl 15: 112–120

    Google Scholar 

  • Elmgren R (1978) Structure and dynamics of Baltic benthos communities, with particular reference to the relationship between macro- and meiofauna. Kieler Meeresforsch, Sonderh 4: 1–22

    Google Scholar 

  • Elmgren R, Ankar S, Marteleur B (1986) Adult interference with postlarvae in soft sediments: The Pontoporeia affinis - Macoma example. Ecology 67 (4): 827–836

    Article  Google Scholar 

  • Frithsen J B, Elmgren R, Rudnik D T (1985) Responses of benthic meiofauna to longterm, low level additions of No. 2 fuel oils. Mar Ecol Prog Ser 23:1–14

    Article  CAS  Google Scholar 

  • Gächter R (1979) MELIMEX, an experimental heavy metal pollution study: Goals, experimental design and major findings. Schweiz Z Hydrol 41:169–176

    Article  Google Scholar 

  • Gamble J C, Davies J M, Steele J H (1977) Loch Ewe bag experiment (1974) Bull Mar Sci 27: 146–175

    Google Scholar 

  • Gerlach S A (1971) On the importance of marine meiofauna for benthos communities. Oeco-logia (Berlin) 6:176–190

    Article  Google Scholar 

  • Gillett J W, Witt J M (eds) (1978) “Terrestrial Microcosms”. Workshop on Terrestrial Microcosms, Otter Crest, 1977

    Google Scholar 

  • Grice D G, Reeve M R (1982) Introduction and description of experimental ecosystems. In: Grice D G, Reeve M R (eds) Marine mesocosms. Biological and chemical research in experimental ecosystems Springer, Berlin, Heidelberg, New York, pp 1–9

    Google Scholar 

  • Grice D G, Harris R P, Reeve M R, Heinbokel J F, Davis C O (1980) Large-scale enclosed water column ecosystems. An overview of Foodweb I, the final CEPEX experiment. J Mar Biol Assoc U K 60: 401–414

    Article  Google Scholar 

  • Hall A, Cooper W E, Werner E E (1970) An experimental approach to the production dynamics and structure of freshwater animal communities. Limnol Oceanogr 15: 839–928

    Article  Google Scholar 

  • Heip C (1980) Meiobentos as a tool in the assessment of the quality of the marine environment. Rapp P-V Reun Cone Int Explor Mer 179:182–187

    Google Scholar 

  • Hill C, Elmgren R (1987) Vertical distribution in the sediment in the co-occurring bentic amphipodsPontoporeia affinis and P.femorata. Oikos 49: 221–229

    Article  Google Scholar 

  • Jansson A-M, Kautsky N, von Oertzen J-A, Schram W, Sjöstedt, B, von Wachenfeldt T, Wallentinus J (1982) Structural and functional relationships in a southern Baltic Fucus ecosystem. A joint study by the BMB Phytobenthos group Contrib Askö Lab Univ Stockholm Sweden No 28: 96 pp

    Google Scholar 

  • Jansson B-O (1968) Quantitative and experimental studies of the interstitial fauna in four Swedish sandy beaches. Ophelia, 5:1–71

    Google Scholar 

  • Kitchen WM (1979) Development of a salt marsh microecosystem. Int J Environ Stud 13: 109–118

    Article  Google Scholar 

  • Kock WC de, Kuiper J (1981) Possibilities for marine pollution research at the ecosystem level. Chemosphere 10 (6): 575–603

    Article  Google Scholar 

  • Kuiper J (1982) Ecotoxicological experiments with marine plankton communities in plastic bags. In: Grice D G, Reeve M R (eds) Marine mescocosms. Biological and chemical research in experimental ecosystems. Springer, Berlin, Heidelberg, New York, pp 181–193

    Google Scholar 

  • Lack T J, Lund J W (1974) Observations and experiments on the phytoplankton of Blelham Tarn, English Lake District. I. The experimental tubes. Freshwater Biol 4: 399–415

    Article  Google Scholar 

  • Landner L (1982) Systems for testing and hazard evaluation of chemicals in the aquatic environment. A background paper and a program outline as a basis for the research plan in preparation. SNV PM 1631, Solna, 81 pp

    Google Scholar 

  • Lehtinen K-J, Notini M, Mattsson J, Landner L (1988) Disappearance of bladder-wrack (Fucus vesiculosus L.) in the Baltic Sea: relation to pulp mill chlorate. Ambio 17: 387–393

    Google Scholar 

  • Lindén O, Rosemarin A, Lindskog A, Höglund C, Johansson S (1987) Effects of oil and oil dispersant on an enclosed marine ecosystem. Environ Sci Technol 21: 374–382

    Article  Google Scholar 

  • Lindvall B (1984) The condition of a Fucus community in a polluted archipelago area on the east coast of Sweden. Ophelia Suppl 3:147–150

    Google Scholar 

  • Lundgren A (1985) Model ecosystems as a tool in freshwater and marine research. Arch Hydrobiol Suppl 70 (2): 157–196

    Google Scholar 

  • Luoma S N (1977) Detection of trace contaminant effects in aquatic ecosystems. J Fish Res Board Can 34: 436–439

    Article  Google Scholar 

  • Macek K J (1982) Aquatic toxicology: Anarchy or democracy? In: Pearson J G, Foster, R B, Bishop W E (eds) Aquatic toxicology and hazard assessment. ASTM STP 766. Am Soc Test Mat, Philadelphia pp 3–8

    Chapter  Google Scholar 

  • Mclntyre A D (1969) Ecology of marine meiobenthos. Biol Rev 44: 245–290

    Google Scholar 

  • Menzel D W (1977) Summary of experimental results: Controlled ecosystem pollution experiment. Bull Mar Sei 27: 142–145

    Google Scholar 

  • Metealf RL (1977) Model ecosystem approach to insecticide degradation: A critique. Annu Rev Entomol 22: 241–261

    Article  Google Scholar 

  • Metealf R L, Sangha G K, Kapoor I P (1971) Model ecosystems for the evaluation of pesticide biodegradability and ecological magnification. Environ Sei Technol 5: 709–713

    Article  Google Scholar 

  • Molander S, Blanck H (1988) Effects of 4,5,6-trichloroguaiacol on periphyton communities from brackish water mesocosms. Water Sei Technol 20 (2): 193–196

    CAS  Google Scholar 

  • Montagna P A (1984) In situ measurements of meiobenthic grazing rates on sediment bacteria and edaphic diatoms. Mar Ecol Prog Ser 18:119–130

    Article  Google Scholar 

  • Moriarty F (1983) The study of pollutants in ecosystems. Academic Press, London, New York

    Google Scholar 

  • Notini M, Lehtinen K-J (1984) Effekter på alger och djur av skogsindustriella avloppsvatten vid långtidsexponering i modellekosystem. SSVL — 85, Rapp 26 (5), Stockholm

    Google Scholar 

  • Notini M, Nageil B, Hagström Å, Grahn O (1977) An outdoor model simulating a Baltic Sea littoral ecosystem. Oikos 28: 2–9

    Article  CAS  Google Scholar 

  • Notini M, Holmgren K, Rosemarin A (1987) Long-term fate and effects of low levels of arsenate on the Baltic Sea Fucus vesiculosus. ecosystem. Proc 21st Eur Mar Biol Symp, Gdansk, 1986

    Google Scholar 

  • Notini M, Rosemarin A, Landner L (1988) Enclosure studies on Baltic sea ecosystems. 1 st European Conf Ecotoxicol, Oct 17–19,1988, Copenhagen

    Google Scholar 

  • NRC (1981) Testing for Effects of Chemicals on Ecosystems. Nat Res Counc. Natl Acad Press, Washington D C, 103 pp

    Google Scholar 

  • Ockelman K W (1964) An improved detritus-sledge for collecting meiobenthos. Ophelia 1: 217–222

    Google Scholar 

  • Odum E P (1962) Relationships between structure and function in ecosystems. Jpn J Ecol 12: 108–118

    Google Scholar 

  • OECD (ed) (1981) Guidelines for Testing of Chemicals. OECD, Paris, 474 pp Persson G, Holmgren S K, Jansson M, Lundgren A, Nyman B, Solander D, Ånell C (1977) Phosphorus and nitrogen and the regulation of lake ecosystem: Experimental approaches in subarctic Sweden. In: Proc Circumpolar Conf North Ecol. Natl Res Counc Can, Ottawa, Sept 1975 111:1–19

    Google Scholar 

  • Pilson M E Q, Nixon S W (1980) Marine microcosms in ecological research. In: Giesy J PJr (ed) Microcosms in ecological research DOE Symp Ser, vol 52. Tech Inf Serv, Springfield, Va, CONF-781101, pp 724–741

    Google Scholar 

  • Pilson M E Q, Oviatt C A, Nixon S W (1980) Annual nutrient cycles in a marine microcosms. In: Giesy J PJr (ed) Microcosms in ecological research DOE Symp Ser, vol 52. Tech Inf Serv, Springfield, Va, CONF-781101, pp 753–778

    Google Scholar 

  • Pritchard P H (1982) Model ecosystems. In: Conway R A (ed) Environmental risk analysis for chemicals. Van Nostrand Reinhold, New York, pp 257–353

    Google Scholar 

  • Rosemarin A, Mattsson J, Lehtinen K-J, Notini M, Nylén E (1986) Effects of pulp mill chlorate (C10¯3) onFucus vesiculosus. A summary of projects. Ophelia Suppl 4: 219–224

    Google Scholar 

  • Rudnick P T (1984) Seasonality of community structure and carbon flow in Norwegian Bay sediments. Diss, Univ Rhode Island, Kingston, Rhode Island, USA

    Google Scholar 

  • Schindler D W (1988) Experimental studies of chemical stressors on whole-lake ecosystems. Verh Int Ver Limnol 23:11–41

    Google Scholar 

  • Schindler D W, Fee, E J (1974) Experimental lakes area: Whole-lake experiments in eutrophi- cation. J Fish Res Board Can 31: 937–953

    Article  Google Scholar 

  • Segerstråle S G (1973) Results of bottom fauna sampling in certain localities in the Tvärminne area (inner Baltic) with special reference to the so-called Macoma -Pontoporeia theory. Commentat Biol Soc Sei Fenn 67: 3–12

    Google Scholar 

  • Sheehan P J (1984a) Effects on community and ecosystem structure and dynamics. In: Shee- han P J, Miller D R, Butler G C, Bourdeau Ph (eds) Effects of Pollutants at the Ecosystem Level. SCOPE. Wiley, New York, pp 51–99

    Google Scholar 

  • Sheehan P J (1984b) Functional changes in the ecosystem. In: Sheehan P J, Miller D R, Butler G C, Bourdeau Ph (eds) Effects of pollutants at the ecosystem level. SCOPE. Wiley, New York, pp 101–175

    Google Scholar 

  • Sundelin B (1981) Effects of cadmium on Pontoporeia affinis and the; natural population of meiofauna in a soft bottom model ecosystem. SNV PM 1422, Solna, 28 pp (In Swedish, summary in English)

    Google Scholar 

  • Sundelin B (1983) Effects of cadmium on Pontoporeia affinis (Crustatcea: Amphidpoda) in laboratory soft-bottom microcosms. Mar Biol 74: 203–212

    Article  CAS  Google Scholar 

  • Sundelin B (1984) Single and combined effects of lead and cadmium on Pontoporeia affinis (Crustacea Amphipoda) in laboratory soft-bottom microsoms. In: Persoone G, Jaspers E, Claus C (eds) Ecotoxicological testing for the marine environment. State Univ Ghent 2: 237–258

    Google Scholar 

  • Taub F B, Crow M E (1980) Synthesizing aquatic microcosms. - In: Giesy J PJr (ed) Microcosms in ecological research DOE Symposium Series 52, CONF-781101. Natl Techn Inf Serv, Springfield, Va, pp 69–104

    Google Scholar 

  • Thomas W H, Siebert D L R (1977) Effects of copper on the dominance and the diversity of algae: Controlled ecosystem pollution experiment. Bull Mar Sci 27: 23–33

    CAS  Google Scholar 

  • Thomas W H, Siebert DLR, Takahashi M (1977) Controlled ecosystem pollution experiment: Effects of mercury on enclosed water columns III. Phytoplankton population dynamics and production. Mar Sci Commun 3: 331–354

    CAS  Google Scholar 

  • Wängberg S-Å, Blanck H (1989 a) Modification of the toxic effect of arsenate by the internal nutrient status in microalgae. Proc Int Symp Cell Impacts Ecotoxicol, Lyon 18–20 May 1987 (in press)

    Google Scholar 

  • Wängberg S-Å, Blanck H (1989 b) Arsenate tolerance in marine periphyton communities under different nutrient regimes. Can J Fish Aquat Sci (submitted)

    Google Scholar 

  • Wängberg S-Å, Heyman U, Blanck H (1989) Arsenate tolerance in freshwater periphyton and phytoplankton established under arsenate stress in limnocorrals. Can J Fish Aquat Sci (submitted)

    Google Scholar 

  • Watzin M (1985) Interactions among temporary and permanent meiofauna: Observations on the feeding and behavior of selected taxa, Biol Bull 169: 397–416

    Article  Google Scholar 

  • Zeitzschel B, Davies J M (1978) Benthic growth chambers. Rapp P-V Reun Cons Int Explor Mer 173: 31–42

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Landner, L. et al. (1989). Community Testing, Microcosm and Mesocosm Experiments: Ecotoxicological Tools with High Ecological Realism. In: Landner, L. (eds) Chemicals in the Aquatic Environment. Springer Series on Environmental Management. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61334-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61334-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64796-3

  • Online ISBN: 978-3-642-61334-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics