Skip to main content

Atomic and Molecular Application of Effective Hamiltonian Formalism in Complete and Incomplete Model Spaces

  • Conference paper
Aspects of Many-Body Effects in Molecules and Extended Systems

Part of the book series: Lecture Notes in Chemistry ((LNC,volume 50))

Abstract

Applications of the formalism of effective Hamiltonians in Fock space are presented using complete and (in most cases) incomplete model spaces. Applicatory examples are given for the H2 molecule, the He atom, the molecular ion He 2+2 , and for the three-electron ions C3+ to F6+ in highly excited states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kutzelnigg W (1982) J Chem Phys 77:3081

    Article  CAS  Google Scholar 

  2. Kutzelnigg W, Koch S (1983) J Chem Phys 79:4315

    Article  CAS  Google Scholar 

  3. Kutzelnigg W (1984) J Chem Phys 80:822

    Article  CAS  Google Scholar 

  4. Kutzelnigg W, Mukherjee D, Koch S (1987) J Chem Phys 87:5902

    Article  CAS  Google Scholar 

  5. Mukherjee D, Kutzelnigg W, Koch S (1987) J Chem Phys 87:5911

    Article  CAS  Google Scholar 

  6. Koch S, Mukherjee D (1988) Chem Phys Lett 145:321

    Article  CAS  Google Scholar 

  7. Hose G, Kaldor U (1979) J Phys B 12:3827; (1980) Phys Scr 21:357; (1981) Chem Phys 62:469; (1982) J Phys Chem 86:2133

    Article  CAS  Google Scholar 

  8. Koch S (1984) Thesis, Bochum (unpublished)

    Google Scholar 

  9. Sheppard MG, Freed KF (1981) J Chem Phys 75:4507, 4525; (1981) Int J Quantum Chem Symp 15:21; and refs. therein

    Article  CAS  Google Scholar 

  10. Schucan TH, Weidenmüller HA (1972) Ann Phys 73:108; (1973) ibid 76:483

    Article  CAS  Google Scholar 

  11. Mukherjee D (1986) Proc Ind Acad Sci 96:145

    Article  Google Scholar 

  12. Mukherjee D (1986) Chem Phys Lett 125:207

    Article  CAS  Google Scholar 

  13. Mukherjee D (1986) Int J Quantum Chem Symp 20:409; Mukherjee D, in: Arponen J, Bishop RF, Manninen M (eds) Condensed Matter Theories, vol 3. Plenum Press, New York London, to be publishe

    Article  CAS  Google Scholar 

  14. Mukherjee D, Moitra RK, Mukhopadhyay A (1977) Mol Phys 33:955; Mukhopadhyay A, Moitra RK, Mukherjee D (1979) J Phys B 12:1; Mukherjee D (1979) Pramana 12:203; Haque A, Mukherjee D (1984) J Chem Phys 80:5058

    Article  CAS  Google Scholar 

  15. Kutzelnigg W, in this volume

    Google Scholar 

  16. Kutzelnigg W, Schindler M, Klopper W, Koch S, Meier U, Wallmeier H (1986) in: Dupuis M (ed) Supercomputer simulations in chemistry. Springer, Berlin Heidelberg New York (Lecture notes in chemistry, vol 42)

    Google Scholar 

  17. Pulay P (1980) Chem Phys Lett 73:393

    Article  CAS  Google Scholar 

  18. Hose G (1986) J Chem Phys 84:4505

    Article  CAS  Google Scholar 

  19. Huzinaga S (1965) J Chem Phys 42:1293

    Article  Google Scholar 

  20. Kolos W, Wolniewicz L (1965) J Chem Phys 43:2429; Wolniewicz L, Dressier K (1985) J Chem Phys 82:3292

    Article  CAS  Google Scholar 

  21. Lindgren I, Mukherjee D (1987) Phys Rep (1987) 151:93

    Article  CAS  Google Scholar 

  22. Sawatzki R, Cederbaum LS (1986) Chem Phys Lett 126:430

    Article  CAS  Google Scholar 

  23. Lindgren I (1985) Phys Scr 32:291; (1985) ibid 32:611

    Article  Google Scholar 

  24. Pekeris CL (1959) Phys Rev 115:1216; (1962) ibid 126:1470; (1962) ibid 127:509

    Article  CAS  Google Scholar 

  25. Holøien E, Midtdal J (1970) J Phys B 3:592

    Article  Google Scholar 

  26. Winkler P, Porter RN (1974) J Chem Phys 61:2038

    Article  CAS  Google Scholar 

  27. Kutzelnigg W (1985) J Chem Phys 82:4166

    Article  CAS  Google Scholar 

  28. Kaldor U, in: Arponen J, Bishop RF, Manninen M (eds) Condensed Matter Theories, vol 3. Plenum Press, New York London, to be published

    Google Scholar 

  29. Yagisawa H, Sato H, Watanabe T (1977) Phys Rev A 16:1352

    Article  CAS  Google Scholar 

  30. Browne JC (1965) J Chem Phys 42:1482

    Google Scholar 

  31. Martin WC (1973) J Phys Chem Ref Data 2:257; and refs. therein

    Article  CAS  Google Scholar 

  32. Cooper JW, Fano U, Prats F (1963) Phys Rev Lett 10:518

    Article  Google Scholar 

  33. Burke PG (1968) in: Bates DR, Estermann I (eds) Advances in Atomic and Molecular Physics, vol 4; and refs. therein

    Google Scholar 

  34. Lipsky L, Russek A (1966) Phys Rev 142:59

    Article  CAS  Google Scholar 

  35. Taylor HS, Nazaroff GV, Golebiewski A (1966) J Chem Phys 45:2872; Eliezer I, Taylor HS, Williams JK (1967) J Chem Phys 47:2165

    Article  CAS  Google Scholar 

  36. Blanke JH (1985) Diploma work, Bochum; Blanke JH, Heckmann PH, Träbert E, Hucke R, v Buttlar H (1985) Z Physik A321:47; Blanke JH, Heckmann PH, Träbert E (1985) Phys Scr 32:509

    Google Scholar 

  37. Blanke JH, Heckmann PH, Träbert E, Hucke R (1987) Phys Scr 35:780

    Article  CAS  Google Scholar 

  38. To KX, Knystautas EJ, Drouin R, Berry HG (1979) J Physique Coll 40:C1–3

    Google Scholar 

  39. Dumont PD, Garnir HP, Baudinet-Robinet Y, Chung KT (1985) Phys Rev A 32:229; Baudinet-Robinet Y, Dumont PD, Garnir HP (1986) Phys Scr 33:73

    Article  CAS  Google Scholar 

  40. Chung KT (1984) Phys Rev A 29:682

    Article  CAS  Google Scholar 

  41. Holten E, Geltman S (1967) Phys Rev 153:81; Holøien E (1982) Phys Rev A 26:1132

    Article  Google Scholar 

  42. Vainshtein LA, Safronova UI (1978) At Data Nucl Data Tables 21:49; (1980) ibid 25:311

    Article  CAS  Google Scholar 

  43. Ali MA, Samanta SR (1980) Phys Rev A 19:202

    Article  Google Scholar 

  44. Larsson S, Crossley R (1982) Int J Quantum Chem 22:837

    Article  CAS  Google Scholar 

  45. Lunell S, Cogordan JA, Öster P (1985) J Phys B 18:3849

    Article  CAS  Google Scholar 

  46. Laughlin C, Fairley NA (1987) Z Phys D 5:91

    Article  CAS  Google Scholar 

  47. Träbert E, Curtis LJ (1985) Phys Scr 32:599

    Article  Google Scholar 

  48. Ahmed M, Lipsky L (1975) Phys Rev A 12:1176

    Article  CAS  Google Scholar 

  49. Martinson I, Denne B, Ekberg JO, Engström L, Huld S, Jupén E, Litzén U, Mannervik S, Trigueiros A (1983) Phys Scr 27:201

    Article  CAS  Google Scholar 

  50. Livingston AE, Berry HG (1978) Phys Rev A 17:1966

    Article  CAS  Google Scholar 

  51. Koch S, to be published

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Koch, S. (1989). Atomic and Molecular Application of Effective Hamiltonian Formalism in Complete and Incomplete Model Spaces. In: Mukherjee, D. (eds) Aspects of Many-Body Effects in Molecules and Extended Systems. Lecture Notes in Chemistry, vol 50. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61330-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61330-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-50765-9

  • Online ISBN: 978-3-642-61330-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics