Skip to main content

Hyperspherical Harmonics Methods for few- and Many-Body Problems

  • Conference paper
  • 252 Accesses

Part of the book series: Lecture Notes in Chemistry ((LNC,volume 50))

Abstract

An ab-initio solution of the many body problem using the hyperspherical harmonics expansion method has been reviewed. Results of typical calculations has been compared with those by other methods. Merits and demerits of this method, especially when the number of particle increases, have been discussed. Finally a modification of this method, in which an integro-differential equation in two variables is set up, has been discussed. The integro-differential equation approach appears to be very convenient for the many body problem. Some results of calculation by this method have also been presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zernike F. and Brinkman H.C. (1935) Proc. Kon. Ned. Acad. Wensch 33:3.

    Google Scholar 

  2. Simonov Yu A. (1966) Yad. Fiz. 3:630 [Sov. J. Nucl. Phys. 3:461].

    Google Scholar 

  3. Vallieres M., Das T. K. and Coelho H. T. (1976) Nucl.Phys. A257:389.

    CAS  Google Scholar 

  4. Vallieres M., Coelho H. T. and Das T. K. (1976) Nucl. Phys. A271:95.

    CAS  Google Scholar 

  5. Coelho H. T., Das T. K. and Vallieres M. (1977) Rev. Bras. Fis. 7:237.

    CAS  Google Scholar 

  6. Fabre de la Ripelle M. (1971) C. R. Acad. Sci. (Paris) 247B:104.

    Google Scholar 

  7. Fabre de la Ripelle M. and Navarro J. (1979) Ann. Phys. (N.Y.) 123:185.

    Article  Google Scholar 

  8. Beiner M. and Fabre de la Ripelle M. (1971) Lett. Nuo. Cim. 1:584.

    Article  Google Scholar 

  9. Ballot J. L. and Fabre de la Ripelle M. (1980) Ann. Phys. (N.Y.) 127:62.

    Article  CAS  Google Scholar 

  10. Fabre de la Ripelle M. (1979) C. R. Acad. Sci. (Paris) 288B:325.

    Google Scholar 

  11. Das T. K., Coelho H. T. and Fabre de la Ripelle M. (1982) Phys. Rev. C26:2288.

    Google Scholar 

  12. Das T. K. and Coelho H. T. (1982) Phys. Rev. C26:697.

    Google Scholar 

  13. Das T. K. and Coelho H. T. (1982) Phys. Rev. C26:754.

    Google Scholar 

  14. Coelho H. T., Das T. K. and Fabre de la Ripelle M. (1982) Phys. Letts. 109B:255.

    CAS  Google Scholar 

  15. Das T. K., Coelho H. T. and Fabre de la Ripelle M. (1982) Lett. Nuo. Cim. 33:1.

    Article  CAS  Google Scholar 

  16. Coelho H. T., Das T. K. and Robilotta M. R. (1983) Phys. Rev. C28:1812.

    Google Scholar 

  17. Robilotta M. R., Isidro Filho M. P., Coelho H. T. and Das T. K. (1985) Phys. Rev. C31:646.

    Google Scholar 

  18. Fabre de la Ripelle M. (1983) Ann. Phys. (N.Y.) 147:281.

    Article  Google Scholar 

  19. Fabre de la Ripelle M. (1984) Phys. Letts. 135:5.

    Article  Google Scholar 

  20. Fabre de la Ripelle M. (1983) Comp. Rend. Ser. II 296:1027.

    Google Scholar 

  21. Fabre de la Ripelle M. (1984) Comp. Rend. Ser. II 299:839.

    Google Scholar 

  22. Fabre de la Ripelle M. (1986) Few Body Systems 1:181.

    Article  Google Scholar 

  23. Das T. K. and De T. B. (1987) Pramana 28:645.

    Article  CAS  Google Scholar 

  24. De T. B. and Das T. K. (1987) Phys. Rev. C36:402.

    Google Scholar 

  25. Fabri E. and Fiorio G. (1970) Nucl. Phys. A141:325.

    Google Scholar 

  26. Afnan I. R. and Tang Y. C. (1968) Phys. Rev. 175:1337.

    Article  CAS  Google Scholar 

  27. Erens G., Visschers J. L. and van Wageningen R. (1971) Ann. Phys. (N.Y.) 67:461.

    Article  Google Scholar 

  28. Fantoni S., Panattoni L. and Rosati S. (1970) Nuo. Cim. A69:81.

    Google Scholar 

  29. Payne G. L., Friar J. L., Gibson B. F. and Afnan I. R. (1980) Phys. Rev. C22:823.

    Google Scholar 

  30. Ballot J. L. (1981) Z. Phyk. A302:1347.

    Google Scholar 

  31. Zabolitzky J. G., Schmidt K. E. and Kalos M. H. (1982) Phys. Rev. C25:1111.

    Google Scholar 

  32. Fabre de la Ripelle M. (1987) private communication.

    Google Scholar 

  33. Das T. K., Coelho H. T. and Fabre de la Ripelle M. (1982) Phys. Rev. C26:2281.

    Google Scholar 

  34. Fabre de la Ripelle M., Fiedeldey H. and Sofianos S. A. (1987) preprint.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Das, T.K. (1989). Hyperspherical Harmonics Methods for few- and Many-Body Problems. In: Mukherjee, D. (eds) Aspects of Many-Body Effects in Molecules and Extended Systems. Lecture Notes in Chemistry, vol 50. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61330-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61330-2_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-50765-9

  • Online ISBN: 978-3-642-61330-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics