Skip to main content

Relativistic and Non-Relativistic Many-Body Procedure, Applied to Atomic Systems

  • Conference paper
Aspects of Many-Body Effects in Molecules and Extended Systems

Part of the book series: Lecture Notes in Chemistry ((LNC,volume 50))

Abstract

A review is given of the non-relativistic many-body perturbation theory (MBPT), emphasizing the diagrammatic expansion and the all-order procedures, such as the coupled-cluster approach. Illustrative numerical examples are given. More recent formal developments, concerning incomplete model space and hermitian effective hamiltonian, are also mentioned. Various approximate schemes currently in use for relativistic many-body calculations are discussed and analysed from the point of QED. The “no-virtual-pair approximation”, which contains the all-order non-relativistic MBPT as well as the leading relativistic corrections, is applied to He-like systems. Possibilities are discussed of going beyond that scheme for general many-electron systems in a rigorous and systematic way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Desclaux JP (1975) Comput Phys Commun 9:31

    Article  Google Scholar 

  2. Grant I P, (1970) Adv Phys 19:747

    Article  CAS  Google Scholar 

  3. Andriessen J et al (1976) Phys Rev A13:1669; (1978) J Phys B 11:2601

    Google Scholar 

  4. Heully J-L and Mårtensson-Pendrill A-M (1983) Phys Rev A 27:3332; (1983) Phys. Scripta 27:291

    Article  CAS  Google Scholar 

  5. Lindroth E (1987) Thesis Department of Physics, Chalmers University of Technology/University of Gothenburg, Göteborg

    Google Scholar 

  6. Lindroth E (1987) Phys Scripta 36:485; Phys. Rev A 37:316

    Article  CAS  Google Scholar 

  7. Bloch C (1958) Nucl Phys 6:329; (1958) ibid 7:451

    Article  CAS  Google Scholar 

  8. Lindgren I (1974) J Phys B 7:2441

    Article  CAS  Google Scholar 

  9. Kvasnicka V Czech (1974) J Phys B 24:605; (1977) Adv Chem Phys 36:345

    Google Scholar 

  10. Jörgensen F (1975) Mol Phys 29:1137

    Article  Google Scholar 

  11. Haque M A and Mukherjee D (1984) J Chem Phys 80:5058

    Article  CAS  Google Scholar 

  12. Brueckner K A (1955) Phys Rev 100:36

    Article  CAS  Google Scholar 

  13. Goldstone J (1957) Proc Roy Soc London A 239:267

    Article  CAS  Google Scholar 

  14. Brandow B (1967) Rev Mod Phys 39:771

    Article  CAS  Google Scholar 

  15. Lindgren I and Morrison J (1986) Atomic Many-Body Theory, Second edition, Springer Series on Atoms and Plasmas, Vol 3, Springer-Verl

    Google Scholar 

  16. Coster F and Kümmel H (1958) Nucl Phys 7:421

    Article  Google Scholar 

  17. Cizek J (1966) J Chem Phys 45:4256; (1969) Adv Chem Phys 14:35

    Article  CAS  Google Scholar 

  18. Mukherjee D, Moitra R K and Mukhopadhyay A: (1975) Mol Phys 30:1861; (1977) ibid 33:955

    Article  CAS  Google Scholar 

  19. Offermann R, Ey W and Kümmel H (1976) Nucl Phys A 273:349

    Article  Google Scholar 

  20. Ey W (1978) Nucl Phys A 296:189

    Article  Google Scholar 

  21. Lindgren I (1978) Int J Quantum Chem S 12:33

    Google Scholar 

  22. Wick G C (1950) Phys Rev 80:268

    Article  Google Scholar 

  23. McKoy V and Winter N W (1968) J. Chem Phys 48:5514

    Article  Google Scholar 

  24. Mårtensson A-M (1978) Thesis, Dept of Physics, Chalmers Univ of Techn/Univ of Gothenburg); (1979) J Phys B 12:3995

    Google Scholar 

  25. Salomonson S and Öster P (unpublished)

    Google Scholar 

  26. Pekeris C L (1958) Phys Rev 112:1649; (1962) ibid 126:1470

    Article  CAS  Google Scholar 

  27. Heully J-L and Salomonson S (1988) to be published

    Google Scholar 

  28. Salomonson S (1984) Z Physik A 316:135

    Article  CAS  Google Scholar 

  29. Forsén S and Lindman B (1981) Methods of Biochemical Analysis, D Glick (ed) Vol 29 p 289, Wiley & Sons, New York

    Chapter  Google Scholar 

  30. Grundevik P et al (1979) Phys Rev Lett 42:1528

    Article  CAS  Google Scholar 

  31. Schucan T H and Weidenmüller H A (1972) Ann Phys 73:108; (1972) ibid 76:483

    Article  CAS  Google Scholar 

  32. Mukherjee D (1986) Chem Phys Lett 125:207

    Article  CAS  Google Scholar 

  33. Lindgren I and Mukherjee D (1987) Physics Reports 151:93

    Article  CAS  Google Scholar 

  34. Haque A and Mukherjee D (1984) J Chem Phys 80:207

    Article  Google Scholar 

  35. Chaudhuri R, Lindgren I and Mukherjee D to be published

    Google Scholar 

  36. Breit G (1929) Phys Rev B 34:553; (1930) ibid 36:383; (1932) ibid 39:616

    Article  CAS  Google Scholar 

  37. Brown G E and Ravenhall G E (1951) Proc Roy Soc A 208:552

    Article  CAS  Google Scholar 

  38. Sucher J (1980) Phys Rev A 22:348

    Article  CAS  Google Scholar 

  39. See, for example, Yennie DR, Frautsch SC and Suura H (1961) Ann Phys (NY) 13:379

    Google Scholar 

  40. See, for example, Itzykson C and Zuber J-B (1985) Quantum Field Theory, McGraw-Hill, p128

    Google Scholar 

  41. Gaunt J A (1929) Proc Roy Soc (London) A 122:513

    Article  CAS  Google Scholar 

  42. Sucher J (1957) Phys Rev 107:1448

    Article  CAS  Google Scholar 

  43. Lakdawala SD and Mohr P (1984) Phys Rev. A 29:1047

    Article  CAS  Google Scholar 

  44. Mohr P (1985) Proceedings of the “Atomic Theory Workshop on Relativistic and QED Effects in Heavy Atoms”, NBS, Kelly HP and Kim Y-K (eds), American Institute of Physics; (1986) Report at the NATO School, “Atoms in unusual situations”, Cargèse, Corsica, June 1985

    Google Scholar 

  45. Lindgren I (1986) Physica Scripta 36:591; (1987) Proceedings of the “Symposium on Atomic Spectroscopy and Highly Ionized Atoms” (SASHIA), Hickory Ridge, Lisle, Ill, August 1987, to be published in Nuclear Instruments and Methods

    Article  Google Scholar 

  46. Mittleman MH (1971) Phys Rev A 5:2395

    Article  Google Scholar 

  47. Johnson WR and Sapirstein J (1986) Phys Rev Lett 57:1126

    Article  CAS  Google Scholar 

  48. Johnson WR, Blundell SA and Sapirstein J (1988) Phys Rev A 15:307

    Article  Google Scholar 

  49. Zygelman B and Mittleman MH (1986) J Phys B 19:1891

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lindgren, I. (1989). Relativistic and Non-Relativistic Many-Body Procedure, Applied to Atomic Systems. In: Mukherjee, D. (eds) Aspects of Many-Body Effects in Molecules and Extended Systems. Lecture Notes in Chemistry, vol 50. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61330-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61330-2_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-50765-9

  • Online ISBN: 978-3-642-61330-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics