Skip to main content

Quantum Chemistry in Fock Space

  • Conference paper

Part of the book series: Lecture Notes in Chemistry ((LNC,volume 50))

Abstract

The many electron-problem of atomic or molecular theory can be formulated either in configuration space (where operators act on the coordinates of the particles) or in Fock space (where operators act on the occupation numbers of spin orbitals). The representation of operators in Fock space (often also referred to as occupation number representation or 2nd quantization) is essentially equivalent to the representation in configuration space, it is, however, more general insofar as a Fock space Hamiltonian has eigenstates with arbitrary numbers of electrons, while in configuration space the number of electrons is fixed. So Fock space is, in a sense, a direct sum of Hilbert spaces for various particle numbers. Processes like ionization or electron attachment, in which the number of electrons is changed are hence better described in Fock space than in configuration space (i.e. in n- particle Hilbert space).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kutzelnigg W (1981) Chem Phys Lett 83:156; (1982) J Chem Phys 77:3081

    Article  CAS  Google Scholar 

  2. Kutzelnigg W, Koch S (1983) J Chem Phys 79:4315

    Article  CAS  Google Scholar 

  3. Knowles PJ, Handy NC (1984) Chem Phys Lett 111:315

    Article  CAS  Google Scholar 

  4. Klahn B, Bingel WA (1977) Int J Quant Chem 11:943; (1977) 44:927

    Article  CAS  Google Scholar 

  5. Kutzelnigg W (1985) Theoret Chim Acta 68:445

    Article  CAS  Google Scholar 

  6. Klopper W, Kutzelnigg W (1986) Chem Phys Lett 134:17

    Article  Google Scholar 

  7. Gelfand LM, Tsetline ML (1950) Dokl Acad Nauk SSSR 71:825, 1070

    Google Scholar 

  8. Matsen FA, Welske TL (1977) Int J Quantum Chem 12:1001

    Article  CAS  Google Scholar 

  9. Paldus J (1976) in: Eyring H, Henderson D (eds) ‘Theoretical Chemistry: Advances and Perspectives’, Vol 2 p 131, Acad Press, New York

    Google Scholar 

  10. Wick G (1950) Phys Rev 80:268

    Article  Google Scholar 

  11. Kutzelnigg W (1984) J Chem Phys 80:822

    Article  CAS  Google Scholar 

  12. Primas H (1961) Helv Phys Acta 34:331

    CAS  Google Scholar 

  13. Shavitt I, Redmon L (1980) J Chem Phys 73:5711

    Article  CAS  Google Scholar 

  14. Klein DJ (1974) J Chem Phys 61:786

    Article  CAS  Google Scholar 

  15. Jørgensen F (1978) J Chem Phys 68:3952

    Article  Google Scholar 

  16. Bloch C (1958) Nucl Phys 6:329

    Article  CAS  Google Scholar 

  17. Kutzelnigg W (1984) in: Kümmel H and Ristig ML (eds) ‘Recent Progress in Many-Body Theories’, Lecture Notes in Physics, Vol… Springer Berlin

    Google Scholar 

  18. Goldstone J (1957) Proc Roy Soc A239:267

    Google Scholar 

  19. Brandow BH (1967) Rev Mod Phys 39:771

    Article  CAS  Google Scholar 

  20. Hugenholtz NM (1957) Physica 23:481

    Article  CAS  Google Scholar 

  21. Kutzelnigg W (1985) J Chem Phys 82:4166

    Article  CAS  Google Scholar 

  22. Coester F, Kümmel H (1960) Nucl Phys 17:477

    Article  CAS  Google Scholar 

  23. Cizek J (1966) J Chem Phys 45:4256

    Article  CAS  Google Scholar 

  24. Koch S, in this volume

    Google Scholar 

  25. Hose G, Kaldor U (1979) J Chem Phys B 12:3827

    CAS  Google Scholar 

  26. Mukherjee D (1986) Proc Ind Acad Sci 96:145

    Article  Google Scholar 

  27. Kutzelnigg W, Mukherjee D, Koch S (1987) J Chem Phys 87:5902

    Article  CAS  Google Scholar 

  28. Mukherjee D, Kutzelnigg W, Koch S (1987) J Chem Phys 87:5911

    Article  CAS  Google Scholar 

  29. Kutzelnigg W, Mukherjee D, to be published

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kutzelnigg, W. (1989). Quantum Chemistry in Fock Space. In: Mukherjee, D. (eds) Aspects of Many-Body Effects in Molecules and Extended Systems. Lecture Notes in Chemistry, vol 50. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61330-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61330-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-50765-9

  • Online ISBN: 978-3-642-61330-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics