Skip to main content

Part of the book series: Lecture Notes in Chemistry ((LNC,volume 50))

Abstract

Since few problems of interest admit of solutions in closed form in quantum mechanics, we are obliged to use approximate methods based on expansion schemes of one form or another. Such expansions, when truncated at some finite order, often do not reflect some of the inherent properties of the systems under study. A typical example of this type of failure is the well known “symmetry dilemma” encountered in the Hartree — Fock calculation. The broken- symmetric solutions, occasionally faced, stem from the use of a restricted variation of the function in the subspace of single determinants. A full CI calculation will obviously restore the symmetry, but since that is neither practicable nor desirable, additional conditions are imposed to ensure that the resultant functions are symmetry-adapted even at the trial function level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H Primas in Modern Quantum Chemistry Ed: O Sinanoglu, Vol 2, (Academic Press, N Y, 1965)

    Google Scholar 

  2. W Kutzelnigg in Modern Theoretical Chemistry, Ed: H F Schaeffer III. (Plenum Press, N Y, 1977)

    Google Scholar 

  3. K A Bruckner Phys Rev 97 1353 (1955); 100 36 (1950)

    Article  Google Scholar 

  4. J Goldstone J Proc Roy Soc., London, Ser A 239 267 (1957)

    Article  CAS  Google Scholar 

  5. N M Huzenholtz Physica 27 481 (1957)

    Article  Google Scholar 

  6. J Hubbard Proc Roy Soc A240 539 (1957)

    Google Scholar 

  7. F Cöster Nucl Phys 7 421 (1958)

    Article  Google Scholar 

  8. F Cöster and H Kûmmel Nucl Phys 17 477 (1960)

    Article  Google Scholar 

  9. H Kûmmel K H Luhrmann and J G Zabolitzky Phys Rep 36 1 (1978)

    Article  Google Scholar 

  10. O Sinanglu Adv Chem Phys 6 315 (1964)

    Article  Google Scholar 

  11. J Cizek J Chem Phys 45 4265 (1966); Adv Chem Phys 14. 35 (1969)

    Google Scholar 

  12. J Paldus, J Cizek and I Shavitt Phys Rev A5 50 (1972); J A Pople A Krishnan and R Sehieger Int J Quantum Chem S14 545 (1976)

    Google Scholar 

  13. R J Bartlett and G D Purvis Int J Quantum Chem 14 561 (1978); Phys Sripta 21 255 (1980)

    Article  CAS  Google Scholar 

  14. R J Bartlett Ann Rev Phys Chem 32 359 (1981)

    Article  CAS  Google Scholar 

  15. J A Pople, J S Brinkley and R. Seeger Int J Quantum Chem S10 1 (1976)

    Google Scholar 

  16. I Lindgren and J Morrison Atomic Many-Body Theory (Springer-Verlag Berlin 1982)

    Google Scholar 

  17. D Mukherjee Proc Ind Acad Sci 96 145 (1986)

    Article  Google Scholar 

  18. D Mukherjee Chem Phys Lett 125 207 (1986)

    Article  CAS  Google Scholar 

  19. D Mukherjee Int J Quantum Chem S20 409 (1986)

    Article  Google Scholar 

  20. I Lindgren and D Mukherjee Phys Rep 151 93 (1987)

    Article  CAS  Google Scholar 

  21. W Kutzelnigg, D Mukherjee and S Koch, J Chem Phys 87 5902 (1987)

    Article  CAS  Google Scholar 

  22. D Mukherjee, W Kutzelnigg and S Koch, J Chem Phys 87 5911 (1987)

    Article  CAS  Google Scholar 

  23. W Kutzelnigg J Chem Phys 77 3081 (1982)

    Article  CAS  Google Scholar 

  24. W Kutzelnigg and S Koch J Chem Phys 79 4315 (1983)

    Article  CAS  Google Scholar 

  25. B Brandow Rev Mod Phys 39 771 (1967)

    Article  CAS  Google Scholar 

  26. D Mukherjee, R K Moitra and A Mukhopadhyay, Mol Phys 30 1861 (1975); 33 955 (1977)

    Article  CAS  Google Scholar 

  27. A Mukhopadhyay, R K Moitra and D Mukherjee J Phys B 12 1 (1979)

    Article  CAS  Google Scholar 

  28. A Haque and D Mukherjee J Chem Phys 80 5058 (1984)

    Article  CAS  Google Scholar 

  29. R Offerman, W Ey and H Kummel Nucl Phys A273 349 (1976)

    Google Scholar 

  30. R Offerman Nucl Phys A273 368 (1976)

    Google Scholar 

  31. W Ey Nucl Phys A296 189 (1978)

    CAS  Google Scholar 

  32. I Lindgren Int J Quantum Chem S12 33 (1978)

    Google Scholar 

  33. B Jeziorski and H J Monkhorst Phys Rev A24 1668 (1981)

    Google Scholar 

  34. W Kutzelnigg, this volume

    Google Scholar 

  35. V Kvasnicka Chem Phys Lett 79 89 (1981)

    Article  CAS  Google Scholar 

  36. S Pal, M D Prasad and D Mukherjee Theoret Chim Acta 66 311 (1984)

    Article  CAS  Google Scholar 

  37. T H Schucan and H A Weidenmûller Ann Phys 73 108 (1972); 76 483 (1973)

    Article  CAS  Google Scholar 

  38. D Hegarty M A Robb Mol Phys 37 1455 (1979)

    Article  CAS  Google Scholar 

  39. H Baker, M A Robb and Z Slattery Mol Phys 44 1035 (1981)

    Article  CAS  Google Scholar 

  40. H Sun, M G Shepard, K F Freed and M Herman Chem Phys Lett 77 555 (1981)

    Article  CAS  Google Scholar 

  41. H Sun and K F Freed Chem Phys Lett 81 279 (1981)

    Article  Google Scholar 

  42. G Hose and U Kaldor J Phys B 12 3827 (1979); Phys Scripta 21 357 (1980); Chem Phys. 62 419 (1981); J Phys Chem 86 2133 (1982)

    Article  CAS  Google Scholar 

  43. B H Brandow in New Horizons in Quantum Chemistry Ed: P O Löwdin and B Pullman (Reidel Dordrecht 1983)

    Google Scholar 

  44. D Mukherjee in Condensed Matter Theories Vol 3; Ed: J Arponen R F Bishop and M Manninen (Plenum 1988)

    Google Scholar 

  45. I Lindgren Phys Scripta 32 291 (1985): 32 611 (1985)

    Article  Google Scholar 

  46. D Sinha, S Mukhopadhyay and D Mukherjee Chem Phys Lett 129 369 (1986)

    Article  CAS  Google Scholar 

  47. S Pal, M Rittby, R J Bartlett, D Sinha and D Mukherjee Chem Phys Lett 137 273 (1987); J Chem Phys 88 4357 (1988)

    Article  CAS  Google Scholar 

  48. S Koch and D Mukherjee Chem Phys Lett 145 321 (1988)

    Article  CAS  Google Scholar 

  49. S Koch, this volume

    Google Scholar 

  50. R Chaudhuri and D Mukherjee, submitted to Chem Phys Lett.

    Google Scholar 

  51. D Mukherjee and S Pal to be submitted to Adv Quantum Chem

    Google Scholar 

  52. L Fetter and J D Walecka Quantum Theory Of Many Particle Systems Mc Graw Hill New York (1971)

    Google Scholar 

  53. C Bloch and J Horowitz Nucl Phys 8 91 (1958)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chowdhuri, R., Mukherjee, D., Prasad, M.D. (1989). Separability Problem in General Many Electron Systems. In: Mukherjee, D. (eds) Aspects of Many-Body Effects in Molecules and Extended Systems. Lecture Notes in Chemistry, vol 50. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61330-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61330-2_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-50765-9

  • Online ISBN: 978-3-642-61330-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics