Advertisement

Homogeneous Complex Manifolds

  • D. N. Akhiezer
Part of the Encyclopaedia of Mathematical Sciences book series (EMS, volume 10)

Abstract

The subject of this article is the set of complex manifolds X whose group of automorphisms (of biholomorphic transformations) acts transitively on X. The list of one-dimensional complex manifolds having this property was surely known already to Poincaré. It consists of the complex plane C, the punctured plane C* = ℂ\{0}, the unit disc in C, the Riemann sphere, and one-dimensional complex tori (elliptic curves). In each of these cases it is easy to calculate the automorphism group and to see that it is a Lie group of transformations of the manifold X.

Keywords

Complex Manifold Parabolic Subgroup Stein Manifold Hermitian Symmetric Space Homogeneous Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography1

  1. 1.
    Ahiezer, D.N. (Akhiezer): Invariant meromorphic functions on complex semisimple Lie groups, Invent. Math. 65, 325–329 (1982). Zbl. 479. 32010MathSciNetzbMATHGoogle Scholar
  2. 2.
    Ahiezer, D.N. (Akhiezer): Equivariant completions of homogeneous algebraic varieties by homogeneous divisors. Ann. Global Anal, and Geom. 1, No. 1, 49–78 (1983). Zbl. 537.14033MathSciNetzbMATHGoogle Scholar
  3. 3.
    Ahiezer, D.N. (Akhiezer): Invariant analytic hypersurfaces in complex nilpotent Lie groups. Ann. Global Anal, and Geom. 2, 129–140 (1984). Zbl. 576.32039MathSciNetzbMATHGoogle Scholar
  4. 4.
    Akhiezer, D.N.: Compact complex homogeneous spaces with solvable fundamental group. Izv. Akad. Nauk SSSR, Ser. Mat., 38, 59–80 (1974); English transl.: Math. USSR, Izv.8, 61–83 (1975).MathSciNetGoogle Scholar
  5. 5.
    Akhiezer, D.N.: Dense orbits with two ends. Izv. Akad. Nauk SSSR, Ser. Mat. 41, 308–324 (1977); English transl.: Math. USSR, Izv. 11, 293–307 (1977). Zbl. 373.14016MathSciNetzbMATHGoogle Scholar
  6. 6.
    Akhiezer, D.N.: A bound for the dimension of the automorphism group of a compact complex homogeneous space. Soobshch. Akad. Nauk Grus. SSR (Russian) 110, 469–472 (1983) Zbl. 579.32049MathSciNetzbMATHGoogle Scholar
  7. 7.
    Akao, K.: On prehomogeneous compact Kahler manifolds. Proc. Japan Acad., Ser. A, 49, 483–485 (1973). Zbl. 272.32009MathSciNetzbMATHGoogle Scholar
  8. 8.
    Alekseevskii, D.V., Kimel’fe’d, B.N.: The structure of homogeneous Riemann spaces with zero Ricci curvature. Funkts. Anal. Prilozh. 9, No. 2 5–11 (1975); English transl: Funct. Anal. Appl. 9, 97–102 (1975). Zbl. 316.53041Google Scholar
  9. 9.
    Aribaud, Fr.: Une nouvelle démonstration d’un théorème de R. Bott et B. Kostant. Bull. Soc. Math. Fr. 95, 205–242 (1967). Zbl. 155.69MathSciNetzbMATHGoogle Scholar
  10. 10.
    Barth, W., Oeljeklaus, E.: Über die Albanese-Abbildunge einer fasthomogenen Kählermannigfaltigkeit. Math. Ann. 211, 47–62 (1974). Zbl. 276.32022MathSciNetzbMATHGoogle Scholar
  11. 11.
    Barth, W., Otte, M.: Invariante holomorphe Funktionen auf reduktiven Liegruppen. Math. Ann. 201, 97–112 (1973). Zbl. 253.32018MathSciNetzbMATHGoogle Scholar
  12. 12.
    Berezin, F.A., Pyatetskii-Shapiro, I.I.: Homogeneous extensions of a complex space. (Russian) Dokl. Akad. Nauk SSSR 99, 889–892 (1954). Zbl. 58.308MathSciNetzbMATHGoogle Scholar
  13. 13.
    Bertin, J.: Pinceaux de droites et automorphismes des surfaces affines. J. Reine Angew. Math. 341, 32–53 (1983). Zbl. 501.14028MathSciNetzbMATHGoogle Scholar
  14. 14.
    Bialynicki-Birula, A.: On homogeneous affine spaces of linear algebraic groups. Am. J. Math. 85, 577–582 (1963). Zbl. 116.382MathSciNetzbMATHGoogle Scholar
  15. 15.
    Bialynicki-Birula, A., Hochschild, G. Mostow, G.D.: Extensions of representations of algebraic linear groups. Am. J. Math. 85, 131–144 (1963). Zbl. 116.23MathSciNetzbMATHGoogle Scholar
  16. 16.
    Blanchard, A.: Sur les variétés analytiques complexes. Ann. Sci. Ec. Norm. Supér., III. Sér. 73, 157–202(1956). Zbl. 73.375MathSciNetGoogle Scholar
  17. 17.
    Boothby, W.M.: Homogeneous complex contact manifolds. Proc. Symp. Pure Math. 3, 144–154 (1961).Zbl. 103.387MathSciNetGoogle Scholar
  18. 18.
    Boothby, W.M.: A note on homogeneous complex contact manifolds. Proc. Am. Math. Soc. 13, 276–280(1962). Zbl. 103.387MathSciNetzbMATHGoogle Scholar
  19. 19.
    Borel, A.: Kählerian coset spaces of semisimple Lie groups. Proc. Natl. Acad. Sci. USA 40, 1147–1151 (1954).Zbl. 58.160MathSciNetzbMATHGoogle Scholar
  20. 20.
    Borel, A.: Symmetrie compact complex spaces. Arch. Math. 33, 49–56 (1979).Zbl. 423.32015MathSciNetzbMATHGoogle Scholar
  21. 21.
    Borel A., Hirzebruch, F.: Characteristic classes and homogeneous spaces I. Am. J. Math. 80, 458–538 (1958); II. 81, 315–382 (1959); III. 82, 491–504 (1960).MathSciNetGoogle Scholar
  22. 22.
    Borel A., Remmert, R.: Über kompakte homogene Kählersche Mannigfaltigkeiten. Math. Ann. 145, 429–439 (1962).Zbl. 111.180MathSciNetzbMATHGoogle Scholar
  23. 23.
    Bott, R.: Homogeneous vector bundles. Ann. Math. 66, 203–248 (1957).Zbl. 94.357MathSciNetzbMATHGoogle Scholar
  24. 24.
    Cartan, E.: Sur les domaines bornés homogènes de l’espace de n variables complexes. Abh. Math. Semin. Univ. Hamb. 11, 116–162 (1935).Zbl. 11.123zbMATHGoogle Scholar
  25. 25.
    Danilov, V.l.: The geometry of toric varieties. Usp. Mat. Nauk 33, No. 2 85–134 (1978); English transi.: Russ. Math. Surv. 33, No. 2 97–154 (1978).MathSciNetzbMATHGoogle Scholar
  26. 26.
    Demazure, M.A.: A very simple proof of Bott’s theorem. Invent. Math. 33, 271–272 (1976).Zbl. 383.14017MathSciNetzbMATHGoogle Scholar
  27. 27.
    Dorfmeister, J.: Homogeneous Seigel domains. Nagoya Nath. J. 86, 39–83 (1982).MathSciNetzbMATHGoogle Scholar
  28. 28.
    Dorfmeister, J.: Homogeneous Kähler manifolds admitting a transitive solvable group of automorphisms. Ann. Sci. Ec. Norm. Supér, IV. Sér. 18, 143–180 (1985).MathSciNetzbMATHGoogle Scholar
  29. 29.
    Drucker, D.: Exceptional Lie algebras and the structure of hermitian symmetric spaces. Mem. Am. Math. Soc. 208, 207 p. (1978).Zbl. 395.17009MathSciNetGoogle Scholar
  30. 30.
    Drucker, D.: Simplified descriptions of the exceptional bounded symmetric domains. Geom. Dedicata 10, 1–29 (1981).Zbl. 486.32020MathSciNetzbMATHGoogle Scholar
  31. 31.
    Gilligan, B.: Ends of complex homogeneous manifolds having nonconstant holomorphic functions. Arch. Math. 37, 544–555 (1981).Zbl. 459.32013MathSciNetzbMATHGoogle Scholar
  32. 32.
    Gilligan, B.: Holomorphic reductions of homogeneous spaces, (Springer) Lect. Notes Math. 1014, 27–36 (1983).Zbl. 529.32013MathSciNetGoogle Scholar
  33. 33.
    Gilligan, B.: Huckleberry, A.T.: On non-compact complex nil-manifolds. Math. Ann. 238, 39–49 (1978).Zbl. 405.32009MathSciNetzbMATHGoogle Scholar
  34. 34.
    Gilligan, B., Huckleberry, A.T.: Complex homogeneous manifolds with two ends. Mich. J. Math. 28, 183–198 (1981).Zbl. 452.32022MathSciNetzbMATHGoogle Scholar
  35. 35.
    Gindikin, S.G.: Analysis in homogeneous domains. Usp. Mat. Nauk 19, 3–92 (1964); English transl.: Russ. Math. Surv. 19, 1–89 (1964) Zbl. 144.81MathSciNetGoogle Scholar
  36. 36.
    Gindikin S.G., Pyatetskii-Shapiro, I.I., Vinberg, E.B.: Homogeneous Kahler manifolds, in Geometry of homogeneous bounded domains, Edizioni Cremonese, Rome 1–87 (1968).Zbl. 183.354Google Scholar
  37. 37.
    Gizatullin, M. Kh.: Affine surfaces which are quasihomogeneous with respect to an algebraic group. Izv. Akad. Nauk SSSR, Ser. Mat. 35, 738–753 (1971); English transl.: Math. USSR, Izv. 5, 754–769 (1971).Zbl. 218.14019Google Scholar
  38. 38.
    Goto, M.: On algebraic homogeneous spaces. Am. J. Math. 76, 811–818 (1954).MathSciNetzbMATHGoogle Scholar
  39. 39.
    Grauert, H., Remmert, R.: Über kompakte homogene komplexe Mannigfaltigkeiten. Arch. Math. 13, 498–507 (1962).Zbl. 118.374MathSciNetzbMATHGoogle Scholar
  40. 40.
    Griffiths, P.A.: Some geometric and analytic properties of homogeneous complex manifolds. Acta Math. 110, 115–155, 157–208 (1963).Zbl. 171.446MathSciNetzbMATHGoogle Scholar
  41. 41.
    Griffiths P.A., Schmid, W.: Locally homogeneous complex manifolds. Acta Math. 123, 253–302 (1970).Zbl. 209.257Google Scholar
  42. 42.
    Hano, J.-I.: On Kählerian homogeneous spaces of unimodular Lie groups. Am. J. Math. 79, 885–900(1957).Zbl. 96.162MathSciNetzbMATHGoogle Scholar
  43. 43.
    Hano, J.-I.: On compact complex coset spaces of reductive Lie groups. Proc. Am. Math. Soc. 15, 159–163(1969).Zbl. 129.157MathSciNetGoogle Scholar
  44. 44.
    Helgason, S.: Differential geometry and symmetric spaces, Academic Press, N.Y. and London (1962).Zbl. 111.181zbMATHGoogle Scholar
  45. 45.
    Hua, Lo-Keng: Harmonic analysis of functions of several complex variables in classical domains. Am. Math. Soc., Providence (1963).Zbl. 112.74Google Scholar
  46. 46.
    Huckleberry, A.T., Livorni, E.L.: A classification of homogeneous surfaces. Can. J. Math. 33, 1097–1110, (1981).Zbl. 504.32025MathSciNetzbMATHGoogle Scholar
  47. 47.
    Huckleberry, A.T., Margulis, G.A.: Invariant analytic hypersurfaces. Invent. Math. 71, 235–240 (1983).Zbl. 507.32024MathSciNetzbMATHGoogle Scholar
  48. 48.
    Huckleberry A.T., Oeljeklaus, E.: A characterization of complex homogeneous cones. Math. Z. 170, 181–194 (1980).Zbl. 412.32030MathSciNetzbMATHGoogle Scholar
  49. 49.
    Huckleberry, A.T., Oeljeklaus, E.: Classification theorems for almost homogeneous spaces. Institute E. Cartan. Nancy, No. 9 (1984). Zbl. 549.32024Google Scholar
  50. 50.
    Huckleberry, A.T., Oeljeklaus, E.: Homogeneous spaces from a complex analytic viewpoint, in Manifolds and Lie groups, Progress in Mathematics, Vol 14, [Birkhäuser-Verlag, Basel, Boston, Stuttgart] 159–186 (1981).Zbl. 527.32020Google Scholar
  51. 51.
    Huckleberry A.T., Snow, D.M.: Pseudoconcave homogeneous manifolds. Ann. Sc. Norm. Super Pisa, CI. Sci., IV. Ser. 7, 29–54 (1980).Zbl. 506.32015MathSciNetGoogle Scholar
  52. 52.
    Huckleberry A.T., Snow, D.M.: A classification of strictly pseudoconcave homogeneous manifolds. Ann. Sc. Norm. Super. Pisa, CI. Sci., IV. Ser. 8, 231–255 (1981).Zbl. 464.32019MathSciNetGoogle Scholar
  53. 53.
    Huckleberry, A.T., Snow, D.M.: Almost homogeneous Kähler manifolds with hypersurface orbits. Osaka J. Math. 19, 763–786 (1982). Zbl. 507.32023MathSciNetzbMATHGoogle Scholar
  54. 54.
    Ise, M.: Bounded symmetric domains of exceptional type, J. Fac. Sci., Univ. Tokyo, Sect. IA 23, 75–105 (1976). Zbl. 357.32016MathSciNetGoogle Scholar
  55. 55.
    Kaneyuki, S.: Homogeneous bounded domains and Siegel domains. (Springer) Lect. Notes Math. 241 (1971). Zbl. 241.32011Google Scholar
  56. 56.
    Kantor, I.L.: The cross ratio of points and other invariants on homogeneous spaces with parabolic stationary subgroups I. Tr. Semin. Vektorn. Tenzorn. Anal. [Prilozh. Geom. Mekh. Fiz.] (Russian) 17, 250–313 (1974). Zbl. 307.53029MathSciNetGoogle Scholar
  57. 57.
    Kaup, W.: Reelle Transformationsgruppen und invariante Metriken auf komplexen Räumen. Invent. Math. 3, 43–70 (1967). Zbl. 157.134MathSciNetzbMATHGoogle Scholar
  58. 58.
    Kaup W., Matsushima, Y., Ochiai, T.: On the automorphisms and equivalences of generalized Siegel domains. Am. J. Math. 92, 475–498 (1970). Zbl. 198.425MathSciNetzbMATHGoogle Scholar
  59. 59.
    Kempf, G., Knudsen, F., Mumford, D., Saint-Donat, B.: Toroidal embeddings I. (Springer) Lect. Notes Math. 339 (1973). Zbl. 271.14017Google Scholar
  60. 60.
    Khosrovyan, O.M.: On complex homogeneous spaces with two ends, in Geometric methods in problems of analysis and algebra. (Russian) Yaroslavl’ Univ. 35–42 (1978). Zbl. 413.32013Google Scholar
  61. 61.
    Kime’fel’d, B.N.: Reductive groups which are locally transitive on the flag manifolds of the orthogonal groups. (Russian) Tr. Tbilis. Mat. Inst. Razmadze 62, 49–75 (1979). Zbl. 459.32014MathSciNetGoogle Scholar
  62. 62.
    Kobayashi, S., Nomizu, K.: Foundations of differential geometry, Vol. I. Interscience, N.Y. (1963), Vol 2. (1969). Zbl. 119.375 Zbl. 175.485Google Scholar
  63. 63.
    Koecher, M.: An elementary approach to bounded symmetric domains. Rice Univ. Houston (1969). Zbl. 217.109zbMATHGoogle Scholar
  64. 64.
    Korânyi, A., Wolf, J.A.: Realization of Hermitian symmetric spaces as generalized half-planes. Ann. Math., II. Ser. 81, 265–288 (1965). Zbl. 137.274Google Scholar
  65. 65.
    Kostant, B.: Lie algebra cohomology and the generalized Borel-Weil theorem. Ann. Math., II. Ser. 74, 329–387 (1961). Zbl. 134.35MathSciNetGoogle Scholar
  66. 66.
    Koszul, J.L.: Sur la forme hermitienne canonique des espaces homogènes complexes. Can. J. Math. 7, 562–576 (1955). Zbl. 66.161MathSciNetzbMATHGoogle Scholar
  67. 67.
    Lescure, F.: Elargissement du groupe d’automorphismes pour des variétés quasi-homogènes. Math. Ann. 261, 455–462 (1982). Zbl. 531.32018MathSciNetzbMATHGoogle Scholar
  68. 68.
    Luna, D., Vust. Th.: Plongements d’espaces homogènes. Comment. Math. Helv. 58, 186–245. Zbl. 545.14010MathSciNetzbMATHGoogle Scholar
  69. 69.
    Malyshev, F.M.: Complex homogeneous spaces of semisimple Lie groups of the first category. Izv. Akad. Nauk SSSR, Ser. Mat. 39, 992–1002 (1975); English transl.: Math. USSR, Izv. 9, 939–949 (1977). Zbl. 322.53024MathSciNetzbMATHGoogle Scholar
  70. 70.
    Malyshev, F.M.: Complex homogeneous spaces of semisimple Lie groups of type Dn. Izv. Akad. Nauk SSSR, Ser. Mat. 41, 829–852 (1977); English transl.: Math. USSR, Izv. 11, 783–805 (1978). Zbl. 362.53043MathSciNetzbMATHGoogle Scholar
  71. 71.
    Malyshev, F.M.: Complete complex structures on homogeneous spaces of semisimple Lie groups. (Russian) Izv. Akad. Nauk SSSR, Ser. Mat. 43, 1294–1318 (1979). Zbl. 428.32021MathSciNetzbMATHGoogle Scholar
  72. 72.
    Matsushima, Y.: Sur les espaces homogènes Kähleriens d’un groupe de Lie réductif. Nagoya Math. J. 11, 53–60 (1957). Zbl. 99.375MathSciNetzbMATHGoogle Scholar
  73. 73.
    Matsushima, Y.: Espaces homogènes de Stein des groupes de Lie complexes I. Nagoya Math. J. 16, 205–218 (1960). Zbl. 94.282MathSciNetzbMATHGoogle Scholar
  74. 74.
    Matsushima, Y.: Espaces homogènes de Stein des groups de Lie complexes II. Nagoya Math. J. 18, 153–164(1961). Zbl. 143.302MathSciNetzbMATHGoogle Scholar
  75. 75.
    Matsushima, Y., Morimoto, A.: Sur certains espaces flbrés holomorphes sur une variété de Stein. Bull. Soc. Math. Fr. 88, 137–155 (1960). Zbl. 94.281MathSciNetzbMATHGoogle Scholar
  76. 76.
    Morimoto, A.: Non-compact complex Lie groups without non-constant holomorphic functions, in Proceedings of the conference on complex analysis at the Univ. of Minneapolis. Springer-Verlag, Berlin-Heidelberg-New York. 256–272 (1965). Zbl. 144.79Google Scholar
  77. 77.
    Murakami, S.: On automorphisms of Siegel domains. (Springer) Lect. Notes Math. 286 (1972). Zbl. 245.32001Google Scholar
  78. 78.
    Narasimhan, M.S., Okamoto, K.: An analogue of the Borel-Weil-Bott theorem for hermitian symmetric pairs of non-compact type. Ann. Math., II. Ser. 91, 486–511 (1970). Zbl. 257.22013MathSciNetGoogle Scholar
  79. 79.
    Oeljeklaus, E.: Ein Hebbarkeitssatz für Automorphismengruppen kompakter komplexer Mannigfaltigkeiten. Math. Ann. 190, 154–166 (1970). Zbl. 201.102MathSciNetzbMATHGoogle Scholar
  80. 80.
    Obljeklaus, E.: Fasthomogene Kählermannigfaltigkeiten mit verschwindender ersten Bettizahl. Manuscr. Math. 7, 175–183 (1972). Zbl. 248.32021Google Scholar
  81. 81.
    Oeljeklaus, K., Richthofer, W.: Homogeneous complex surfaces. Math. Ann. 268, 273–292 (1983). Zbl. 551.32023MathSciNetGoogle Scholar
  82. 82.
    Onishchik, A.L.: Complex hulls of compact homogeneous spaces. Dokl. Akad. Nauk SSSR 130, 726–729 (1960); English transl.: Sov. Math. 1, 88–93 (1960). Zbl. 90, 94Google Scholar
  83. 83.
    Onishchik, A.L.: Inclusion relations between transitive compact groups of transformations. Tr. Mosk. Mat. O.-va. 11, 199–242 (1962). Zbl. 192.126zbMATHGoogle Scholar
  84. 84.
    Onishchik, A.L.: Decompositions of reductive Lie groups. Mat. Sb., Nov. Ser. 80 (122), 553–599 (1969). English transl. II, Sev., Am. Math. Soc. 50, 5–58 (1966). Zbl. 222.22011 Engl, transl: Math. USSR, Sb, 9 (1969), 515–554 (1970)Google Scholar
  85. 85.
    Otte, M., Potters, J.: Beispiele homogener Mannigfaltigkeiten. Manuscr. Math. 10, 117–127 (1973). Zbl. 264.32013MathSciNetzbMATHGoogle Scholar
  86. 86.
    Pauer, F.: Normale Einbettungen von G/U. Math. Ann. 257, 371–396 (1981). Zbl. 461.14013MathSciNetzbMATHGoogle Scholar
  87. 87.
    Pauer, F.: Glatte Einbettungen von G/U. Math. Ann. 262, 421–429 (1983). Zbl. 512.14029MathSciNetzbMATHGoogle Scholar
  88. 88.
    Pommerening, K.: Observable radizielle Untergruppen von halbeinfachen algebraischen Gruppen. Math. Z. 165, 243–250 (1979). Zbl. 379.20040MathSciNetzbMATHGoogle Scholar
  89. 89.
    Popov, V.L.: Classification of affine algebraic surfaces that are quasihomogeneous with respect to an algebraic group. Izv. Akad. Nauk SSSR, Ser. Mat. 37, 1038–1055 (1973); English transl.: Math. USSR, Izv. 7, 1039–1055 (1975). Zbl. 251.14018MathSciNetzbMATHGoogle Scholar
  90. 90.
    Popov, V.L.: Classification of three-dimensional affine algebraic varieties that are quasihomogenous with respect to an algebraic group, Izv. Akad. Nauk SSSR, Ser. Mat. 39, 566–609, (1975); English transl.: Math. USSR, Izv. 9, 535–576 (1976).MathSciNetzbMATHGoogle Scholar
  91. 91.
    Potters, J.: On almost homogeneous compact complex analytic surfaces. Invent. Math. 8, 244–266 (1969). Zbl. 205.251MathSciNetzbMATHGoogle Scholar
  92. 92.
    Pyatetskiï-Shapiro, I.I. (Piatetski-Shapiro, I.I.) On a problem of E. Cartan. Dokl. Akad. Nauk SSSR (Russian) 124, 272–273 (1959). Zbl. 89, 62zbMATHGoogle Scholar
  93. 93.
    Pyatetskiï-Shapiro, I.I. (Piatetski-Shapiro, I.I.) Automorphic functions and the geometry of classical domains. GIFML, Moscow (1961); English transl.: Gordon and Breach, N.Y. (1969).Google Scholar
  94. 94.
    Remmert, R., van de Ven, A.: Zur Funktionentheorie homogener komplexer Mannigfaltigkeiten. Topology 2, 137–157 (1963). Zbl. 122.86MathSciNetzbMATHGoogle Scholar
  95. 95.
    Rothaus, O.S.: Automorphisms of Siegel domains. Am. J. Math. 101, 1167–1179 (1979). Zbl. 443.32022MathSciNetzbMATHGoogle Scholar
  96. 96.
    Satake, I.: On classification of quasi-symmetric domains. Nagoya Math. J. 62, 1–12 (1976). Zbl. 331.32026MathSciNetzbMATHGoogle Scholar
  97. 97.
    Schmid, W.: On a conjecture of Langlands. Ann. Math., II. Ser. 93, 1–42 (1971). Zbl. 291.43013Google Scholar
  98. 98.
    Schmid, W.: L2-cohomology and discrete series. Ann. Math., II. Ser. 103, 375–394 (1976). Zbl. 333.22009Google Scholar
  99. 99.
    Shima, H.: On homogeneous complex manifolds with negative definite canonical hermitian form. Proc. Japan Acad. 46, 209–211, (1970). Zbl. 207.204MathSciNetzbMATHGoogle Scholar
  100. 100.
    Siegel, C.L.: Topics in complex function theory, Vol. III. Abelian functions and modular functions of several complex variables. Wiley-Interscience, N.Y., London, Sydney, Toronto (1973). Zbl. 257.32002Google Scholar
  101. 101.
    Steinsiek, M.: Transformation groups on homogeneous-rational manifolds. Math. Ann. 260, 423–435 (1982). Zbl. 503.32017MathSciNetzbMATHGoogle Scholar
  102. 102.
    Sukhanov, A.A.: On observable subgroups of linear algebraic groups, Candidate Dissertation, MGU, Moscow (1978).Google Scholar
  103. 103.
    Takeuchi, M.: On orbits in a compact hermitian symmetric space. Am. J. Math. 90, 657–680 (1968). Zbl. 181.243zbMATHGoogle Scholar
  104. 104.
    Tanaka, N.: On infinitesimal automorphisms of Sieigel domains. J. Math. Soc. Japan 22, 180–212(1970). Zbl. 188.81MathSciNetzbMATHGoogle Scholar
  105. 105.
    Tits, J.: Espaces homogènes complexes compacts. Comment. Math. Helv. 37, 111–120 (1962). Zbl. 108.363MathSciNetzbMATHGoogle Scholar
  106. 106.
    Vinberg, È.B., Gindikin, S.G.: Kählerian manifolds admitting a transitive solvable automor-phism group. Mat. Sb., Nov. Ser. 74, 357–377 (1967); English transl.: Math USSR, Sb. 3, 333–351 (1967). Zbl. 153.399MathSciNetGoogle Scholar
  107. 107.
    Vinberg, È.B., Gindikin, S.G., Pyatetskii-Shapiro, I.I.: On the classification and canonical realization of complex homogeneous bounded domains. (Russian) Tr. Mosk. Mat. O.-va 12, 359–388 (1963). Zbl. 137.56Google Scholar
  108. 108.
    Vinberg, È.B., Kimel’fel’d, B.N.: Homogeneous domains on flag manifolds and spherical subgroups of semisimple Lie groups. Funkts. Anal. Prilozh. 12, No. 3, 12–19 (1978); English transl.: Funct. Anal. Appl. 12, 168–174 (1979). Zbl. 439.53055MathSciNetGoogle Scholar
  109. 109.
    Vinberg, È.B., Popov, V.L.: On a class of quasihomogeneous afline varieties. Izv. Akad. Nauk SSSR, Ser. Mat. 36, 749–764 (1972); English transl: Math. USSR, Izv. 6, 743–758 (1973). Zbl 248.14014.MathSciNetzbMATHGoogle Scholar
  110. 110.
    Wang, H.-C.: Closed manifolds with homogeneous complex structures. Am. J. Math. 76, 1–32 (1954). Zbl 55.166zbMATHGoogle Scholar
  111. 111.
    Wang, H.-C.: Complex parallelizable manifolds. Proc. Am. Math. Soc. 5, 771–776 (1954). Zbl 56.154zbMATHGoogle Scholar
  112. 112.
    Wolf, J.A.: On the classification of Hermitian symmetric spaces. J. Math. Mech. 13, 489–495 (1964). Zbl 245.32011MathSciNetzbMATHGoogle Scholar
  113. 113.
    Wolf, J.A.: The action of a real semisimple group on a complex flag manifold I. Orbit structure and holomorphic arc components. Bull. Am. Math. Soc. 75 1121–1237 (1969) Zbl 183.509zbMATHGoogle Scholar
  114. 114.
    Wolf, J.A., Korányi, A.: Generalized Cayley transformations of bounded symmetric domains. Am. J. Math. 87, 899–939 (1965). Zbl 137.274zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • D. N. Akhiezer

There are no affiliations available

Personalised recommendations