Advertisement

Deformations of Complex Spaces

  • V. P. Palamodov
Part of the Encyclopaedia of Mathematical Sciences book series (EMS, volume 10)

Abstract

The origin of deformation theory lies in the problem of moduli, first considered by Riemann. The problem in the theory of moduli can be described thus: to bring together all objects of a single type in analytic geometry, for example, all Riemann surfaces of given genus; to organize them by joining them into a fiber space; to describe the base of this space—the moduli space; to introduce on it an analytic structure; and to study the natural parameters, for example, the periods of holomorphic forms defined on Riemann surfaces. For nonsingular Riemann surfaces the moduli space was constructed in the theory of Teichmüller-Ahlfors-Bers, and the periods of holomorphic forms were described by the billinear relations of Riemann and the theorem of Rauch. But the problem of moduli for multidimensional complex manifolds turned out to be significantly more complicated. Its systematic study began with the work of Kodaira and Spencer in which the basic object of study was the analytic families of complex structures on given smooth manifold. The concept of a complete effective family, due to KodairaSpencer, served as a substitute for the moduli space, but it had various peculiar properties: the structure of the fibers of this family can vary “continuously” along one curve in the base and have “jumps” along another, and the base itself can have singular points (Kuranishi).

Keywords

Modulus Space Riemann Surface Complex Space Complex Manifold Complete Intersection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    Ahlfors, L. V.: The complex analytic structure of the space of closed Riemann surfaces. Princeton, Math. Ser. 24, 45–66 (1960). Zbl. 100.289MathSciNetzbMATHGoogle Scholar
  2. 2.
    Aleksandrov, A.G.: Normal forms of one-dimensional quasi-homogeneous complete intersections. Mat. Sb., Nov. Ser., 117(159), 3–31 (1982); English transl: Math. USSR, Sb. 45, 1–30 (1983). Zbl.508. 14001Google Scholar
  3. 3.
    Arnol’d, V.l.: A remark on the method of stationary phase and Coxeter numbers (Russian) Usp. Mat. Nauk 28, No. 5 17–44 (1973). Zbl. 285.40002MathSciNetzbMATHGoogle Scholar
  4. 4.
    Arnol’d, V.l., Varchenko, A.N., Guseïn-Zade, S.M.: Singularities of differentiate mappings. Classification of critical points, caustics, and wave fronts. Nauka, Moscow (1982).Google Scholar
  5. 5.
    Arnol’d, V.l., Varchenko, A.N., Guseïn-Zade, S.M.: Singularities of differentiable mappings. Monodromy and asymptotics of integrals. (Russian), Nauka, Moscow (1984).Zbl. 545.58001Google Scholar
  6. 6.
    Artin, M.: On isolated rational singularities of surfaces. Am. J. Math. 88, 129–136 (1966). Zbl. 142.186MathSciNetCrossRefGoogle Scholar
  7. 7.
    Artin, M.: Algebraic construction of Brieskorn’s resolutions. J. Algebra 29, 330–348 (1974). Zbl.292.14013MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Bänicä, C., Putinar, M., Schumacher, G.: Variation der globalen Ext in Deformationen kompakter komplexer Räume, Math. Ann. 250, 135–155 (1980). Zbl.438.32007MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bänicä, C., Stänä§ila, O.: Méthodes algébriques dans la théorie globale des espaces complexes. Gauthier-Villars, Paris (1977). Zbl.349.32006Google Scholar
  10. 10.
    Bers, L.: Quasiconformal mappings and Teichmüller’s theorem. Princeton Math. Ser. 24, 89–119(1960). Zbl. 100.289MathSciNetzbMATHGoogle Scholar
  11. 11.
    Bers, L.: Finite dimensional Teichmüller spaces and generalisations. Proc. Symp. Pure Math. 39, Part 1, 115–156 (1983). Zbl. 559.32003Google Scholar
  12. 12.
    Borcea, C.: Some remarks on deformations of Hopf manifolds. Rev. Roum. Math. Pures Appl. 26, 1287–1294(1981). Zbl. 543.32010MathSciNetzbMATHGoogle Scholar
  13. 13.
    Borcea, C.: Smooth global complete intersections in certain compact homogeneous complex manifolds, J. Reine Angew. Math. 344, 65–70 (1983). Zbl. 511.32010MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Brieskorn, E.: Die Auflösung der rationalen Singularitäten holomorpher Abbildungen. Math. Ann. 178, 255–270 (1968). Zbl. 159.377MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Brieskorn, E.: Singular elements of semi-simple algebraic groups. Actes Congres Intern. Math. 1970, Gauthier-Villars, Paris, Part 2, 279–284 (1971). Zbl. 100.289Google Scholar
  16. 16.
    Brieskorn, E.: Die Monodromie der isolierten Singularitäten von Hyperflächen, Manuscr. Math. 2, 103–161 (1970). Zbl. 186.261MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Burns, D., Shnider, S., Wells, R.O.: Deformations of strictly pseudoconvex domains, Invent. Math. 46, 237–253 (1978). Zbl. 412.32022MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Burns, D., Wahl, J. Local contributions to global deformations of surfaces. Invent. Math. 26, 67–88 (1974). Zbl. 288.14010MathSciNetCrossRefGoogle Scholar
  19. 19.
    Chern, S.S., Moser, J.K.: Real hypersurfaces in complex manifolds. Acta Math. 133, 219–271 (1975). Zbl. 302.32015MathSciNetCrossRefGoogle Scholar
  20. 20.
    Clemens, C.H., Griffiths, Ph. A.: The intermediate Jacobian of the cubic threefold. Ann. Math., II. Ser. 95, 281–356 (1972). 214.483MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Dabrowski, K.: Moduli spaces for Hopf surfaces. Math. Ann. 259, 201–225 (1982). Zbl. 497.32017MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Deligne, P.: Theorie de Hodge. II, III. Inst. Haut Etud. Sci., Publ. Math. 40, 5–57 (1972); 44, 5–77(1975). Zbl. 237.14003CrossRefGoogle Scholar
  23. 23.
    Donin, I.F.: Complete families of deformations of germs of complex spaces. Mat. Sb., Nov. Ser, 89(131), 390–399 (1972); English transl.: Math. USSR, Sb. 18, 397–406 (1972). Zbl. 255.32011Google Scholar
  24. 24.
    Donin, I.F.: Construction of a versai family of deformations for holomorphic bundles over a compact complex space. Mat. Sb., Nov. Ser. 94(136), 430–443 (1974); English transl.: Math. USSR, Sb. 23, 405–416 (1975). Zbl. 325.32008MathSciNetGoogle Scholar
  25. 25.
    Douady, A.: Le problème des modules pour les sous-espaces analytiques compacts d’un espace analytique donné. Ann. Inst. Fourier 16, No. 1 1–95 (1966). Zbl. 146.311MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Douady, A.: Flatness and privilege. En Scign. Math, II. Ser. 14, 47–74 (1968). Zbl. 183.351MathSciNetzbMATHGoogle Scholar
  27. 27.
    Douady, A.: Le problème des modules locaux pour les espaces C-analytiques compacts. Ann. Sci. Ec. Norm. Supér, IV., Ser. 7, 569–602, (1975). Zbl. 313.32036MathSciNetGoogle Scholar
  28. 28.
    Douady, A.: Verdier, J.-L.: Séminaire de géometrie analytique.[Astérisque, No. 16–17 (1974).] Paris: Société Mathématique de France (1976), Zbl. 334.00011Google Scholar
  29. 29.
    Duchamp, T, Kalka, M.: Deformation theory for holomorphic foliations. J. Diff. Geom. 14, 317–337(1979). Zbl. 451.57015MathSciNetzbMATHGoogle Scholar
  30. 30.
    Eisenbud, D, Levine, H.I.: An algebraic formula for the degree of C°°-map germ. Sur une inégalité à la Minkowski pur les multiplicités. Ann. Math., II. Ser. 106, 19–44 (1977). Zbl. 398.57020MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Elkik, R.: Singularités rationelles et déformations. Invent. Math. 47, 139–147 (1978). Zbl. 363.14002MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Flenner, H.: Über Deformationen holomorphen Abbildungen, Habilitationsschrift, Osnabrück, 1–142(1978).Google Scholar
  33. 33.
    Forster, O, Knorr, K.: Uber die Deformationen von Vektorraumbündeln auf kompakten komplexen Raümen. Math. Ann. 209, 291–346 (1974). Zbl. 272.32004MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Girbau, J, Haefliger, A, Sundararaman, D.: On deformations of transversely holomorphic foliations. J. Reine Angew. Math. 345, 122–147 (1983). Zbl. 538.32015MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Giusti, M.: Sur les singularités isolées d’intersection completes quasi-homogènes. Ann. Inst. Fourier. 27, No. 3 163–192 (1978). Zbl. 353.14003MathSciNetCrossRefGoogle Scholar
  36. 36.
    Godement, R.: Topologie algébrique et théorie des faisceaux. Hermann, Paris (1958). Zbl. 80.162zbMATHGoogle Scholar
  37. 37.
    Grauert, H.: Ein Theorem der analytischen Garbentheorie und Modulraüme komplexer Strukturen. Inst. Hautes Etud. Sci, Publ. Math, No. 5, 5–64 (1960). Zbl. 100.80Google Scholar
  38. 38.
    Grauert, H.: Über die Deformation isolierter Singularitäten analytischer Mengen. Invent. Math. 15, 171–198 (1972). Zbl. 237.32011MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Grauert, H.: Der Satz von Kuranishi für kompakte komplexe Raüme. Invent. Math. 25, 107–142 (1974). Zbl. 286.32015MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Grauert, H, Kerner, H.: Deformationen von Singularitäten komplexer Raüme. Math. Ann. 153, 236–260 (1964). Zbl. 118.304MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Greuel, G.-M.: Der Gauss-Manin-Zusammenhang isolierter Singularitäten von vollständigen Durchschnitten. Math. Ann. 214, 235–266 (1975). Zbl. 235.266MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Griffiths, Ph.A.: Periods of integrals on algebraic manifolds. I, II, III. Am. J. Math. 90, 568–626. Zbl. 169.523, 805–865 (1968). Zbl. 183.255; Periods of integrals on algebraic manifolds: Summary of main results and discussion of open problems. Bull. Am. Math. Soc. 76, 228–296 (1970). Zbl. 100.289CrossRefGoogle Scholar
  43. 43.
    Griffiths, Ph.A, Schmid, W.: Locally homogeneous complex manifolds. Acta Math. 123, 253–302 (1970). Zbl. 100.289CrossRefGoogle Scholar
  44. 44.
    Hamilton, R.S.: Deformation of complex structures on manifolds with boundary II: Families of non-coercive boundary value problems. J. Differ. Geom. 14, 409–473 (1979). Zbl. 512.32015MathSciNetGoogle Scholar
  45. 45.
    Hamm, H.: Lokale topologische Eigenschaften komplexer Raüme. Math. Ann. 191, 235–252 (1971). Zbl. 214.228MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Horikawa, E.: On deformations of holomorphic maps I, II. J. Math. Soc. Japan 25, 372–396 (1973). Zbl. 254.32022; 26, 647–667 (1974). Zbl. 286.32022MathSciNetCrossRefGoogle Scholar
  47. 47.
    Khimshiashvili, G.N.: On the local degree of a smooth mapping. Soobshch. Akad. Nauk Gruz. SSR 85, 309–312 (1977). Zbl. 346.55008zbMATHGoogle Scholar
  48. 48.
    Kiremidjian, G.: On complex structures with a fixed induced CR-structure. Ann. Math. II. Ser. 109, 87–119 (1979). Zbl. 415.32007MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Klein, F.: Vorlesungen über das Ikosa eder und die Auflösungen der Gleichungen vom fünften Grade. Teubner, Leipzig (1884). Jrb. 16, 61Google Scholar
  50. 50.
    Kodaira, K.: On stability of compact submanifolds of complex manifolds. Am. J. Math. 85, 79–94(1963). Zbl. 173.331MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Kodaira, K, Spencer, D.C.: On deformations of complex analytic structures I, II. Ann. Math, II. Ser. 67, 328–401, 403–466 (1958). Zbl. 100.289MathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    Kodaira, K, Spencer, D.C.: Stability theorems for complex structures. Ann. Math, II. Ser. 71, 43–76(1960). Zbl. 128.169MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    Kodaira, K, Spencer, D.C, Nirenberg, L.: On the existence of deformations of complex analytic structures. Ann. Math, II. Ser. 68, 450–459 (1958). Zbl. 88.380MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    Kosarew, S.: Das Modulproblem für holomorphe Einbettungen mit konkaver Umgebungsstruktur. Math. Z. 180, 307–329 (1982). Zbl. 502.32016MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    Kuranishi, M.: On the locally complete families of complex analytic structures. Ann. Math, II. Ser. 75, 536–577 (1962). Zbl. 106.153MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    Laudal, O.A., Pfister, G.: The local moduli problem applications to the classification of isolated hypersurface singularities. Preprint series. Mat. Inst. Univ. Oslo, No. 11 (1983). Zbl. 100.289Google Scholar
  57. 57.
    Laufer, H.: Deformations of resolutions of two-dimensional singularities. Rice Univ. Studies 59, No. 1, 53–96 (1973). Zbl. 181.32009MathSciNetGoogle Scholar
  58. 58.
    Lê Dûng Trâng, The geometry of the monodromy theorem. Tata Inst. Fund. Res, Stud. Math. 8, 157–173 (1978). Zbl. 434.32010Google Scholar
  59. 59.
    Looijenga, E.: A period mapping of certain semiuniversal deformations. Compos. Math. 30, 299–316 (1975). Zbl. 312.14006Google Scholar
  60. 60.
    Looijenga, E, Steenbrink, J. (H.M.): Milnor number and Tjurina number of complete intersection. Math. Ann. 271, 121–124 (1985). Zbl. 539.14002MathSciNetCrossRefGoogle Scholar
  61. 61.
    Malgrange, B.: Analytic spaces. En Scign. Math, II. Sér. 14, 1–28 (1968). Zbl. 165.405MathSciNetzbMATHGoogle Scholar
  62. 62.
    Martinet, J.: Déploiement versels des applications differentiates et classification des applications stables, (Springer) Lect. Notes Math, 535, 1–44 (1976). Zbl. 362.58004MathSciNetCrossRefGoogle Scholar
  63. 63.
    Mather, J.N.: Stability of C221E;-mappings. II, III. Ann. Math, II. Ser. 89, 254–291 (1969). Zbl. 177.260. Inst. Hautes Etud. Sci. Publ. Math. 127–156 (1969). Zbl. 159.250MathSciNetzbMATHCrossRefGoogle Scholar
  64. 64.
    Milnor, J.: Singular points of complex hypersurfaces, Princeton Univ. Press, Princeton (1968). Zbl. 184.427zbMATHGoogle Scholar
  65. 65.
    Mumford, D.: Lectures on curves on an algebraic surface. Princeton Univ. Press, Princeton (1966). Zbl. 100.289zbMATHGoogle Scholar
  66. 66.
    Namba, M.: Automorphism groups of Hopf surfaces. Tohoku Math. J, II. Ser. 26, 133–157 (1974). Zbl. 283.32023MathSciNetzbMATHCrossRefGoogle Scholar
  67. 67.
    Palamodov, V.P.: On the multiplicity of a holomorphic mapping. Funkts. Anal. Prilozh. 1, Nr. 3 54–65 (1967). English transl.: Funct. Anal. Appl. 1, 218–226 (1968). Zbl. 164.92MathSciNetGoogle Scholar
  68. 68.
    Palamodov, V.P.: Remarks about differentiable mappings of finite multiplicity. Funkts. Anal. Prilozh. 6, No. 2. 52–61 (1972); English transl.: Funct. Anal. Appl. 6, 128–135 (1972). Zbl. 128.58004MathSciNetGoogle Scholar
  69. 69.
    Palamodov, V.P.: Deformations of complex spaces. Usp. Mat. Nauk 31, Nr. 3 129–194 (1976); Zbl. 332.32013. English transl.: Russ. Math. Surv. 31, No. 3 129–197 (1976). Zbl. 347.32009MathSciNetGoogle Scholar
  70. 70.
    Palamodov, V.P.: The tangent complex of an analytic space. (Russian) Tr. Semin. Im. I.G. Petrovskogo No. 4, 173–226 (1978). Zbl. 173.226Google Scholar
  71. 71.
    Palamodov, V.P.: Moduli in versai deformations of complex spaces. Varietes analytiques compactes. (Springer) Lect. Notes Math. 683, 74–115 (1978). Zbl. 387.32007MathSciNetCrossRefGoogle Scholar
  72. 72.
    Palamodov, V.P.: Deformations of Hopf manifolds and the Poincaré-Dulac theorem. Funkts. Anal. Prilozh. 17, No. 4 7–16 (1983); English transl.: Funct. Anal. Appl. 17, 252–259 (1983). Zbl. 561.32009MathSciNetGoogle Scholar
  73. 73.
    Penrose, R.: Nonlinear gravitons and curved twistor theory. Gen. Relativ. Gravitation 7, 31–52 (1976). Zbl. 354.53025MathSciNetzbMATHCrossRefGoogle Scholar
  74. 74.
    Petrovski, I.G, Nikolskiï, S.M, ed.: Algebraic surfaces. Seminar of I.R. Shafarevich. Tr. Mat. Inst. Steklova 75 (1965); English transl.: Proc. Steklov Inst. Math. 75 (1967). Zbl. 154.210Google Scholar
  75. 75.
    Pinkham, H.C.: Deformations of algebraic varieties with Gm-action. Astérisque 20, 1’131 (1974). Zbl. 304.14006MathSciNetzbMATHGoogle Scholar
  76. 76.
    Pinkham, H.C, Persson, U.: Some examples of nonsmoothable varieties with normal crossings. Duke Math. J. 50, 477–486 (1983). Zbl. 100.289MathSciNetzbMATHCrossRefGoogle Scholar
  77. 77.
    Popp, H.: Moduli theory and classification theory of algebraic varieties. (Springer) Lect. Notes Math. 620 (1977). Zbl. 100.289Google Scholar
  78. 78.
    Pyatetskiï-Shapiro, I.I, Shafarevich, I.R.: The Torelli theorem for algebraic surfaces of type K 3. Izv. Akad. Nauk SSSR, Ser. Mat. 35, 530–572 (1971); English transl: Math. USSR, Izv. 5, 547–588 (1971). Zbl. 219.14021MathSciNetGoogle Scholar
  79. 79.
    Quillen, D.: On the (co) homology of commutative rings. Proc. Symp. Pure Math. 17, 65–87 (1970). Zbl. 234.18010MathSciNetGoogle Scholar
  80. 80.
    Saito, K.: Calcul algébrique de la monodromie. Astérisque, No. 7–8, 195–211 (1974). Zbl. 294.14005Google Scholar
  81. 81.
    Saito, K.: Einfach-elliptische Singularitäten. Invent. Math. 23, 289–325 (1974). Zbl. 296.14019MathSciNetzbMATHCrossRefGoogle Scholar
  82. 82.
    Saito, K.: Primitive forms for a universal unfolding of a function with an isolated critical point. J. Fac. Sci, Univ. Tokyo, Sec. IA 28, 775–792 (1981). Zbl. 523.32015zbMATHGoogle Scholar
  83. 83.
    Saito, M.: Gauss-Manin systems and mixed Hodge structure. Proc. Jap. Acad. Ser. A. 58, 29–32 (1982). Zbl. 516.32012zbMATHCrossRefGoogle Scholar
  84. 84.
    Scherk, J, Steenbrink, J.H.M.: On the mixed structure on the cohomology of the Milnor fibre. Math. Ann. 271, 641–665 (1985). Zbl. 618.14002MathSciNetzbMATHCrossRefGoogle Scholar
  85. 85.
    Schlessinger, M.: Functors of Artin rings. Trans. Am. Math. Soc. 130, 208–222 (1968). Zbl. 167.495MathSciNetzbMATHCrossRefGoogle Scholar
  86. 86.
    Schmid, W.: Variation of Hodge structure: the singularities of the period mapping. Invent. Math. 22, 211–319 (1973). Zbl. 211.319MathSciNetzbMATHCrossRefGoogle Scholar
  87. 87.
    Séminaire H. Cartan, 1960/61. Familles d’espaces complexes et fondements de la geometrie analytique, 1962. Ecole Norm. Sup. Paris (1962). Zbl. 124.241 Zbl. 124.241Google Scholar
  88. 88.
    Serre, J.-P.: Algèbre locale. Multiplicités. (Springer) Lect. Notes Math, 11, (1965). Zbl. 100.289Google Scholar
  89. 89.
    Slodowy, P.: Simple singularities and simple algebraic groups. (Springer) Lect. Notes Math. 815 (1980). Zbl. 441.14002Google Scholar
  90. 90.
    Steenbrink, J.H.M.: Mixed Hodge structure on the vanishing cohomology. Nordic Summer School, Symp. Math, Oslo, 1976, 525–563 (1977). Zbl. 557.14007Google Scholar
  91. 91.
    Steenbrink, J.H.M.: Semicontinuity of the singularity spectrum. Invent. Math. 79, 557–565 (1985). Zbl. 568.14021MathSciNetzbMATHCrossRefGoogle Scholar
  92. 92.
    Steenbrink, J.H.M, Zucker, S.: Variation of mixed Hodge structure I, Invent. Math. 80, 489–542 (1985). Zbl. 626.14007MathSciNetzbMATHCrossRefGoogle Scholar
  93. 93.
    Trautmann, G.: Deformations and moduli of coherent analytic sheaves with finite singularities. (Springer) Lect. Notes Math. 670, 233–302 (1978). Zbl. 398.32013MathSciNetCrossRefGoogle Scholar
  94. 94.
    Tyurin, A.N.: The geometry of the Fano surface of a nonsingular cubic Fc P4 and Torelli theorems for Fano surfaces and cubics. Izv. Akad. Nauk SSSR, Ser. Mat. 35, 498–529 (1971); English transl.: Math. USSR, Izv. 5, 517–546 (1971). Zbl. 215.82MathSciNetzbMATHGoogle Scholar
  95. 95.
    Tyurina, G.N.: The topological properties of isolated singularities of complex spaces of codimension one. Izv. Akad. Nauk SSSR 32, 605–620 (1968); English transl.: Math. USSR, Izv. 2, 557–572(1968). Zbl. 176.509zbMATHGoogle Scholar
  96. 96.
    Tyurina, G.N.: Locally semi-universal flat deformations of isolated singularities of complex spaces. Izv. Akad. Nauk SSSR, Ser. Mat, 33, 1026–1058 (1969); English transl.: Math. USSR, Izv. 3, 976–1000 (1969). Zbl. 196, 97MathSciNetzbMATHGoogle Scholar
  97. 97.
    Tyurina, G.N. Resolution of singularities of flat deformations of binary rational points. Funkt. Anal. Prilozh. 4, No. 1, 77–83 (1970); English transl.: Funct. Anal. Appl. 4, 68–73 (1970). Zbl. 221.32008Google Scholar
  98. 98.
    Varchenko, A.N.: The asymptotics of holomorphic forms determine a mixed Hodge structure. Dokl. Akad. Nauk SSSR 225, 1035–1038, (1980); English transl.: Sov. Math, Dokl. 22, 772–775 (1980). Zbl. 516.14007MathSciNetGoogle Scholar
  99. 99.
    Varchenko, A.N.: Semicontinuity of the complex singularity index. Funkts. Anal. Prilozh. 17, No. 4 77–78 (1983); English transl.: Funct. Anal. Appl. 17, 307–308 (1983). Zbl. 536.32005zbMATHCrossRefGoogle Scholar
  100. 100.
    Varchenko, A.N, GiventaF, A.B.: Mappings of periods and the intersection form. Funkts. Anal. Prilozh. 16, No. 2 7–20 (1982); English transl.: Funct. Anal. Appl. 16, 83–93 (1982). Zbl. 497.32008MathSciNetzbMATHGoogle Scholar
  101. 101.
    Wahl, J.: Equisingular deformations of normal surface singularities I, Ann. Math, II. Ser. 104, 325–356 (1976). Zbl. 358.14007MathSciNetzbMATHCrossRefGoogle Scholar
  102. 102.
    Wahl, J.: Simultaneous resolution and discriminantal loci. Duke Math. J. 46, 341–375 (1979). Zbl. 472.14002MathSciNetzbMATHCrossRefGoogle Scholar
  103. 103.
    Wassermann, G.: Stability of unfoldings. (Springer) Lect. Notes Math. 393 (1974). Zbl. 288.57017Google Scholar
  104. 104.
    Wehler, J.: Versai deformation of Hopf surfaces, J. Reine Angew. Math. 328 22–32 (1981). Zbl. 459.32009MathSciNetzbMATHCrossRefGoogle Scholar
  105. 105.
    Wehler, J.: Deformations of complete intersection with singularities. Math. Z. 179, 473–491 (1982). Zbl. 473.14021MathSciNetzbMATHCrossRefGoogle Scholar
  106. 106.
    Wells, R.O.: Deformations of strongly pseudoconvex domains in C2. Proc. Symp. Pure Math. 30, Part 2, 125–128 (1977). Zbl. 357.32013Google Scholar
  107. 107.
    Wirthmuller, K.: Singularities determined by their discriminants. Math. Ann. 252, 237–245 (1980). Zbl. 425.32003MathSciNetzbMATHCrossRefGoogle Scholar
  108. 108.
    Yau, S.S.-T.: Kohn-Rossi cohomology and its application to the Plateau problem I. Ann. Math, II. Ser. 113, 67–110(1981). Zbl. 464.32012zbMATHCrossRefGoogle Scholar
  109. 109.
    Yau, S.S.-T.: Deformations and equitopological deformations of strongly pseudoconvex manifolds. Nagoya Math. J. 82, 113–129 (1981). Zbl. 443.14019MathSciNetzbMATHGoogle Scholar
  110. 110.
    Zucker, S.: Variation of mixed Hodge structure II. Invert. Math. 80, 543–565 (1985). Zbl. 615.14003MathSciNetCrossRefGoogle Scholar

Additional Bibliography

  1. 111.
    Bingener J.; Lokale Modulräume in der analytischen Geometrie. Bd 1, 2. Aspekte der Mathematik, Bde. D2, D3, Braunschweig/Wiesbaden Friedr. Vieweg & Sohn (1987)Google Scholar
  2. 112.
    Forster O, Knorr K.: Konstruktion verseller Familien kompakter komplexer Räume. (Springer) Lect. Notes Math. 705 (1979). Zbl. 100.289Google Scholar
  3. 113.
    Illusie L.: Complex Contangent et déformation I, II. (Springer) Lect. Notes Math. 239, 283 (1971, 1972). Zbl. 224. 13014 Zbl. 100.289Google Scholar
  4. 114.
    Looijenga E.: Homogeneous spaces associated to certain semi-universal deformations. Proc. Intern. Congress Math, 1978, Vol. 2, 529–536 Helsinki (1980). Zbl. 464.32004Google Scholar
  5. 115.
    Pourcin G.: Deformation de singularité isolées. Astérisque 16, 161–173 (1974). Zbl. 292.32014MathSciNetzbMATHGoogle Scholar
  6. 116.
    Retakh V.S.: Massey operations in Lie super algebras and deformations of complex-analytic algebras. Funkts. Anal. Prilozh. (Russian) 11, No. 4, 88–89 (1977); Engl, transl. Funct. Anal. Appl. 11, 319–321 (1978). Zbl. 383.17005MathSciNetzbMATHCrossRefGoogle Scholar
  7. 117.
    Rim D.S.: Formal deformation theory. [In: Groupes des Monodromie en Géométrie Algébrique (SGA 71). Exp VI] (Springer) Sem. Geom. algébrique Bois-Maire, 1967–1969, SGA 7 I, Nr. 6, Lect. Notes Math. 288, 32–132 (1972). Zbl. 246.14001Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • V. P. Palamodov

There are no affiliations available

Personalised recommendations