Methods in the Theory of Sheaves and Stein Spaces

  • A. L. Onishchick
Part of the Encyclopaedia of Mathematical Sciences book series (EMS, volume 10)


This article is devoted to cohomological methods in complex analysis, which have undergone intensive development in the course of the last 35 years. The basic object of study here is a complex analytic space or, roughly speaking, a complex analytic manifold with singular points. Analytic spaces belong (as do also analytic and differentiable manifolds, supermanifolds, and algebraic varieties) to the class of mathematical structures which are defined by fixing on a given topological space a certain stock of continuous local functions. An adequate means for describing such a structure is the concept of a sheaf, which is discussed in Chapter 1. In Chapter 2 we consider first the technically convenient concept of a ringed space, i.e., a space endowed with a sheaf of rings (or algebras), and then a particular case of it—the concept of a complex analytic space, which is fundamental for what follows. We also define here a coherent analytic sheaf. In Chapter 3 we discuss the theory of cohomology with values in a sheaf of abelian groups and indicate its simplest applications to problems of analysis, for example, to the solution of the Cousin problems for polycylindrical domains. In Chapter 4 we give a survey of results related to the so-called Stein spaces. These remarkable complex spaces, which can be defined, roughly speaking, as spaces with a very large stock of global analytic functions, emerged historically as the first objects in complex analysis on which the methods of cohomology were tried.


Holomorphic Function Meromorphic Function Complex Space Complex Manifold Coherent Sheaf 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Acquistapace, F., Broglia, F.: Problemi di Cousin e di Poincaré per spazi di Stein non ridotti. Ann. Sc. Norm. Super. Pisa., CI. Sci. Fis. Mat., III. Ser. 27 (1973), 889–904 (1974). Zbl. 303.32014MathSciNetzbMATHGoogle Scholar
  2. 2.
    Acquistapace, F., Broglia, F., Tognoli, A.: A relative embedding theorem for Stein spaces. Ann. Sc. Norm. Super. Pisa, CI. Sci., IV. Ser. 2, 507–522 (1975). Zbl. 313.32020MathSciNetzbMATHGoogle Scholar
  3. 3.
    Ancona, V., Speder, J.-P.: Espaces de Banach-Stein. Ann. Sc. Norm. Super. Pisa, CI. Sci. Fis. Mat., III. Ser. 25, 683–690 (1972). Zbl. 233.32012MathSciNetGoogle Scholar
  4. 4.
    Andreotti, A., Narasimhan, R.: Oka’s Heftungslemma and the Levi problem for complex spaces. Trans. Am. Math. Soc. 111, 345–366 (1964). Zbl. 134.60Google Scholar
  5. 5.
    Andreotti, A., Vesentini, E.: Les thèorèmes fondamentaux de la théorie des espaces holomorphiquement complets. Cah. Topologie Géom. Différ. 4(1962–1963), Inst. H. Poincaré, Paris (1963)Google Scholar
  6. 6.
    Bănică, C, Stănăşilă, O.: A resuit on section algebras over complex spaces. Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Nat. 47, 233–235 (1970). Zbl. 193.39Google Scholar
  7. 7.
    Bänicä, C., Stănăşilă, O.: Quelques conditions pour q’un espace complexe soit un espace de Stein. Semin. Inst. Math. Acad. R.S.R. 159–164 (1971). Zbl. 222.32006Google Scholar
  8. 8.
    Behnke, H., Stein, K.: Konvergente Folgen von Regularitätsbereichen und die Meromorphie- konvexität. Math. Ann. 116, 204–216 (1938). Zbl. 20, 378MathSciNetGoogle Scholar
  9. 9.
    Behnke, H., Stein, K.: Modifikation komplexer Mannigfaltigkeiten und Riemannseher Gebiete. Math. Ann. 124, 1–16 (1951). Zbl. 43.303MathSciNetzbMATHGoogle Scholar
  10. 10.
    Berg, G.: On 2-dimensional Cousin I-spaces. Math. Ann. 248, 247–248 (1980). Zbl. 411.32012MathSciNetzbMATHGoogle Scholar
  11. 11.
    Bingener, J., Flenner, H.: Steinsche Räume zu vorgegebenen Singularitäten, Arch. Math. 32, 34–37 (1979). Zbl. 384.32004MathSciNetzbMATHGoogle Scholar
  12. 12.
    Bingener, J., Storch, U.: Resträume zu analytischen Mengen in Steinschen Räumen. Math. Ann. 210, 33–53 (1974). Zbl. 275.32006MathSciNetzbMATHGoogle Scholar
  13. 13.
    Cartan, H., Les problèmes de Poincaré et de Cousin pour les fonctions de plusieurs variables complexes. CR. Acad. Sci. Paris 199, 1284–1287 (1934). Zbl. 10.309Google Scholar
  14. 14.
    Cartan H., Idéaux et modules de fonctions analytiques de variables complexes. Bull. Soc. Math. Fr. 78, 29–64 (1950). Zbl. 38.237MathSciNetzbMATHGoogle Scholar
  15. 15.
    Cartan, H.: Sémin. Ec. Norm. Supér., 4. Fonctions analytiques de plusieurs variables complexes. Paris (1951–1952)Google Scholar
  16. 16.
    Cartan, H.: Variétès analytiques complexes et cohomologie, Colloque sur les fonctions de plusieurs variables complexes tenu à Bruxelles, G. Thone, Masson et C-ie, Paris, 41–55 (1953).Google Scholar
  17. 17.
    Cartan, H.: Variétés analytiques réeles et variétés analytiques complexes. Bull. Soc. Math. Fr. 85, 77–99 (1957). Zbl. 83.305MathSciNetzbMATHGoogle Scholar
  18. 18.
    Cartan, H., Sur les fonctions de plusiers variables complexes. Les espace analytiques. Proc. Intern. Congress Mathematicians, Edinburgh, 1958, Camb. Univ. Press 33–52 (1960). Zbl. 117.46Google Scholar
  19. 19.
    Cartan, H., Quotients of complex analytic spaces. Contrib. Function Theory. Internat. Colloquium Bombay, Jan. 1960. Tata Inst. Fundament. Res., Bombay. 1–15 (1960). Zbl. 122.87Google Scholar
  20. 20.
    Chern, S.S.: Complex manifolds. Univ. of Chicago Press (1955–1956). (see Zbl. 74, 302 and Zbl. 74, 303)Google Scholar
  21. 21.
    Chirka, E.M.: Complex analytic sets. Itogi Nauki Tekh., Ser. Sovrem. Probi. Mat., Fundam. Napravleniya 7, 125–166 (1985)MathSciNetGoogle Scholar
  22. 22.
    Coen, S.: Una nota sul problema di Poincaré. Atti Accad. Naz. Lincei, Vili. Ser., Rend., Cl. Sci. Fis. Mat. Nat. 57, 342–345 (1974). Zbl. 338.32004MathSciNetGoogle Scholar
  23. 23.
    Cousin, P.: Sur les fonctions de n variables complexes. Acta Math. 19, 1–62 (1895). Jrb. 26, 456MathSciNetzbMATHGoogle Scholar
  24. 24.
    Demailly, J.-P.: Différents exemples de fibrés holomorphes non de Stein. Séminaire P. Lelong, H. Skoda (Analyse), Année, 1976/77, (Springer) Lecture Notes Math. 694, 15–41 (1978). Zbl. 418.32011MathSciNetGoogle Scholar
  25. 25.
    Demailly, J.-P.: Un exemple de fibré holomorphe non de Stein à fibre C2 ayant pour base le disque ou le plan. Invent. Math. 48, 293–302 (1978). Zbl. 372.32012MathSciNetzbMATHGoogle Scholar
  26. 26.
    Diederich, K., Fornaess, J.E.: Exhaustion functions and Stein neighborhoods for smooth pseudoconvex domains. Proc. Natl. Acad. Sci. USA 72, 3279–3280 (1975). Zbl. 309.32012MathSciNetzbMATHGoogle Scholar
  27. 27.
    Docquier, F., Grauert, H.: Levisches Problem und Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeiten. Math. Ann. 140, 94–123 (1960). Zbl. 95, 280MathSciNetzbMATHGoogle Scholar
  28. 28.
    Douady, A., Le problème des modules pour les sous-espaces analytiques compacts d’un espace analytique donné., Ann. Inst. Fourier 16, No. 1–95 (1966). Zbl. 146.311MathSciNetzbMATHGoogle Scholar
  29. 29.
    Ephraim, R.: Stein manifolds on which the Strong Poincaré Problem can be solved, Proc. Am. Math. Soc. 70, 136–138 (1978).Zbl. 395.32003MathSciNetzbMATHGoogle Scholar
  30. 30.
    Ephraim, R.: Multiplicative linear functional on Stein algebras. Pac. J. Math. 78, 89–93 (1978). Zbl. 412.32018MathSciNetzbMATHGoogle Scholar
  31. 31.
    Fischer, G.: Holomorph-vollständige Faserbündel. Math. Ann. 180, 341–348 (1969). Zbl. 167.368MathSciNetGoogle Scholar
  32. 32.
    Fischer, G.: Fibrés holomorphes au-dessus d’un espace de Stein. Espaces analytiques., Sémin. Inst. Math. Acad. Bucarest, Romania 1969 57–69 (1971). Zbl. 219, 32008Google Scholar
  33. 33.
    Fischer, G.: Complex analytic geometry. Lect. Notes in Math. 538 Berlin-Heidelberg-New York: Springer-Verlag (1976). 201p. Zbl. 343.32002Google Scholar
  34. 34.
    Fornaess, J.E.: 2-dimensional counterexamples to generalizations of the Levi problem. Math. Ann. 230, 169–173 (1977). Zbl. 379.32016MathSciNetzbMATHGoogle Scholar
  35. 35.
    Forster, O.: Uniqueness of topology in Stein algebras. Function Algebras Proc. internat. Sympos. Tulane Univ. 1965, 157–163 (1966). Scott-Foresman, Chicago (1966). Zbl. 151.97Google Scholar
  36. 36.
    Forster, O.: Zur Theorie der Steinschen Algebren und Moduln, Math. Z. 97, 376–405 (1967). Zbl. 148.322MathSciNetzbMATHGoogle Scholar
  37. 37.
    Forster, O.: Plongements des variétés de Stein. Comment. Math. Helv. 45, 170–184 (1970). Zbl. 191.94MathSciNetzbMATHGoogle Scholar
  38. 38.
    Forster, O.: Topologische Methoden in der Theorie Steinscher Räume. Actes Congr. Int. Mathématiciens 1970 Nice/France, Vol. 2, 613–618 Gauthier-Villars, Paris (1971). Zbl. 245.32006Google Scholar
  39. 39.
    Forster, O.: Riemannsche Flächen, Springer, Berlin (1977). Heidelberger Taschenbücher, Band 184. Zbl. 381.30021zbMATHGoogle Scholar
  40. 40.
    Fuks, B.A.: Introduction to the theory of analytic functions of several complex variables. Fizmatgiz, Moscow (1962); English transi.: Amer. Math. Soc., Providence, Rhode Island (1963); Special Chapters in the theory of several complex variables. Fizmatgiz, Moscow (1963); English transi.: Amer. Math. Soc, Providence, Rhode Island (1965). Zbl. 146.308Google Scholar
  41. 41.
    Godement, R.: Topologie algébrique et théorie des faisceaux, Hermann, Paris (1958). Zbl. 80.162zbMATHGoogle Scholar
  42. 42.
    Grauert, H.: Charakterisierung der holomorph-vollständigen komplexen Räume, Math. Ann. 129, 233–259 (1955). Zbl. 64.326MathSciNetzbMATHGoogle Scholar
  43. 43.
    Grauert, H.: On Levi’s problem and the imbedding of real-analytic manifolds, Ann. Math- 68, 460–472 (1958). Zbl. 108.78MathSciNetzbMATHGoogle Scholar
  44. 44.
    Grauert, H.: Ein Theorem der analytischen Garbentheorie und Modulräume komplexer Strukturen, Inst. Haut. Etud. Sci., Publ. Math., No. 5, 5–64 (1960). Zbl. 100.80Google Scholar
  45. 45.
    Grauert, H.: Set theoretic complex equivalence relations, Math. Ann. 265, 137–148 (1983). Zbl. 504.32007MathSciNetzbMATHGoogle Scholar
  46. 46.
    Grauert, H, Remmert, R.: Singularitäten komplexer Mannigfaltigkeiten und Riemannsche Gebiete, Math. Z. 67, 103–128 (1957). Zbl. 77.289MathSciNetzbMATHGoogle Scholar
  47. 47.
    Grauert, H, Remmert, R.: Komplexe Räume. Math. Ann. 136, 245–318 (1958). Zbl. 87.290MathSciNetzbMATHGoogle Scholar
  48. 48.
    Grauert, H, Remmert, R.: Analytische Stellenalgebren, Springer, Berlin (1971). Die Grundlehren der Mathematischen Wissenschaften Band 176. Zbl. 231.32001zbMATHGoogle Scholar
  49. 49.
    Grauert, H, Remmert, R.: Theorie der Steinschen Räume, Springer, Berlin (1977). Die Grundlehren der Mathematischen Wissenschaften Band 227. Zbl. 379.32001Google Scholar
  50. 50.
    Grauert, H, Remmert, R.: Coherent analytic sheaves, Springer, Berlin (1984). Die Grundlehren der Mathematischen Wissenschaften Band 265. Zbl. 537.32001Google Scholar
  51. 51.
    Griffiths, Ph., Harris, J.: Principles of algebraic geometry. John Wiley & Sons, New York (1978) Zbl. 408.14001zbMATHGoogle Scholar
  52. 52.
    Gronwall, T.H.: On the expressibility of a uniform function of several complex variables as a quotient of two functions of en tire character, Trans. Am. Math. Soc. 18, 50–64(1917). Jrb. 46, 529MathSciNetzbMATHGoogle Scholar
  53. 53.
    Grothendieck, A.: Sur quelques points d’algèbre homologique. Tôhoku Math. J. 9, 119–221 (1957). Zbl. 118.261MathSciNetzbMATHGoogle Scholar
  54. 54.
    Gunning, R.C, Rossi, H.: Analytic functions of several complex variables, Prentice-Hall, Englewood Cliffs (1965). Zbl. 141.86zbMATHGoogle Scholar
  55. 55.
    Hamm, H.A.: Zum Homotopietyp Steinscher Räume, J. Reine Angew. Math. 338, 121–135 (1983). Zbl. 491.32010MathSciNetzbMATHGoogle Scholar
  56. 56.
    Hirschowitz, A.: Domaines de Stein et fonctions holomorphes bornées, Math. Ann. 213, 185–193 (1975). Zbl. 284.32011MathSciNetzbMATHGoogle Scholar
  57. 57.
    Hörmander, L.: An introduction to complex analysis in several variables, Van Nostrand, Princeton (1966). Zbl. 138.62zbMATHGoogle Scholar
  58. 58.
    Jennane, B.: Groupes de cohomologie d’un fibré holomorphe à base et à fibre de Stein, Invent. Math. 54, 75–79 (1979). Zbl. 427.32016MathSciNetzbMATHGoogle Scholar
  59. 59.
    Jennane, B.: Problème de Levi et morphisme localement de Stein, Math. Ann. 256, 37–42 (1981). Zbl. 491.32012MathSciNetzbMATHGoogle Scholar
  60. 60.
    Jennane, B.: Remarques sur les ouverts localements de Stein. Math. Ann. 263, 371–375 (1983). Zbl. 522.32010MathSciNetzbMATHGoogle Scholar
  61. 61.
    Kaup, L.: Eine topologische Eigenschaft Steinscher Räume, Nachr. Akad. Wiss. Gött, Math. Phys. Kl. 213–224 (1967). Zbl. 146.313Google Scholar
  62. 62.
    Laufer, H.B.: On sheaf cohomology and envelopes of holomorphy, Ann. Math. 84, 102–118 (1966). Zbl. 143.302MathSciNetzbMATHGoogle Scholar
  63. 63.
    Laufer, H.B.: Imbedding annuli in ℂ2. J. Anal. Math. 26, 187–215 (1973). Zbl. 286.32017MathSciNetzbMATHGoogle Scholar
  64. 64.
    Le Barz, P.: A propos des revêtements ramifiés d’espace de Stein, Math. Ann. 222, 63–69 (1976). Zbl. 328.32012MathSciNetzbMATHGoogle Scholar
  65. 65.
    Leray, J.: L’anneau spectral et l’anneau filtré d’homologie d’un espace localement compact et d’une application continue, J. Math. Pures Appl. 29, 1–139. (1950). Zbl. 38.363MathSciNetzbMATHGoogle Scholar
  66. 66.
    Malgrange, B.: Lectures on the theory of functions of several complex variables. Tata Inst. Fundament. Res., Bombay (1958).Google Scholar
  67. 67.
    Markoe, A.: Runge families and inductive limits of Stein spaces. Ann. Inst. Fourier 27, No. 3 117–127 (1978). Zbl. 323.32014MathSciNetGoogle Scholar
  68. 68.
    Markoe, A.: Holomorphic convexity and the Corona property. Rev. Roum. Math. Pures Appl. 23, 67–70 (1978). Zbl. 418.32010MathSciNetzbMATHGoogle Scholar
  69. 69.
    Markoe, A.: A holomorphically convex analogue of Cartan’s Theorem B, Ann. Math. Stud. 100, 291–298 (1981). Zbl. 491.32009MathSciNetGoogle Scholar
  70. 70.
    Markushevich, A.I.: Introduction to the classical theory of Abelian functions (Russian) Nauka, Moscow (1979). Zbl. 493.14023Google Scholar
  71. 71.
    Matsushima, Y., Morimoto, A.: Sur certains espaces fîbrés holomorphes sur une variété de Stein. Bull. Soc. Math. Fr. 88, 137–155 (1960). Zbl. 94.281MathSciNetzbMATHGoogle Scholar
  72. 72.
    Milnor, J.: Morse Theory. Ann. Math. Stud., No. 51, Princeton Univ. Press, Princeton (1963) Zbl. 108.104Google Scholar
  73. 73.
    Mok, N.: The Serre problem on Riemann surfaces. Math. Ann. 258, 145–168 (1981). Zbl. 497.32013MathSciNetzbMATHGoogle Scholar
  74. 74.
    Narasimhan, R.: Imbedding of holomorphically complete complex spaces, Am. J. Math. 82, 917–934(1960). Zbl. 104.54MathSciNetGoogle Scholar
  75. 75.
    Narasimhan, R.: The Levi problem for complex spaces. II. Math. Ann. 146, 195–216 (1962). Zbl. 131.308MathSciNetzbMATHGoogle Scholar
  76. 76.
    Narasimhan, R.: A note on Stein spaces and their normalizations. Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 16, 327–333 (1962). Zbl. 112, 311MathSciNetzbMATHGoogle Scholar
  77. 77.
    Narasimhan, R.: Introduction to the theory of analytic spaces, Springer Lect. Notes Math. 25 (1966). Zbl. 168.60Google Scholar
  78. 78.
    Narasimhan, R.: On the homology groups of Stein spaces. Invent. Math. 2, 377–385 (1967). Zbl. 148.322MathSciNetzbMATHGoogle Scholar
  79. 79.
    Oka, K.: Sur les fonctions analytiques de plurieurs variables. II: Domaines d’holomorphie. J. Sci. Hiroshima Univ., Ser. A 7, 115–130 (1937). Zbl. 17, 122zbMATHGoogle Scholar
  80. 80.
    Oka, K.: Sur les fonctions analytiques de plurieurs variables. III: Deuxième problème de Cousin, J. Sci. Hiroshima Univ., Ser. A 9, 7–19 (1939).MathSciNetzbMATHGoogle Scholar
  81. 81.
    Oka, K.: Sur les fonctions analytiques de plurieurs variables. VII: Sur quelques notions arithmétiques. Bull. Soc. Math. Fr. 78, 1–27 (1950). Zbl. 36.52MathSciNetzbMATHGoogle Scholar
  82. 82.
    Oka, K.: Sur les fonctions analytiques de plusieurs variables. IX: Domaines finis sans point critique intérieur. Jap. J. Math. 23, 97–155 (1953). Zbl. 53.243MathSciNetzbMATHGoogle Scholar
  83. 83.
    Onishchik, A.L.: Some concepts and applications of nonabelian cohomology theory. Tr. Mosk. Mat. O.-va 17, 45–88 (1967); English transi.: Trans. Mose. Math. Soc. 17, 49–98 (1967). Zbl. 191.539zbMATHGoogle Scholar
  84. 84.
    Onishchik, A.L.: Stein spaces. Itogi Nauki Tekh., Ser. Algebra Topologiya Germ. 11, 125–151 (1974). Zbl. 304.32010; English transi.: J. Sov. Math. 4, 540–554 (1976). Zbl. 339.32007zbMATHGoogle Scholar
  85. 85.
    Onishchik, A.L.: Pseudoconvexity in the theory of complex spaces. Itogi Nauki Tekh., Ser.Algebra Topologiya. Germ. 15, 93–171 (1977); English transl.: Sov. Math. 14, 1363–1407 (1980). Zbl. 449.32020Google Scholar
  86. 86.
    Poincaré, H.: Sur les fonctions de deus variables. Acta Math. 2, 97–103 (1883). Jrb. 15, 358MathSciNetzbMATHGoogle Scholar
  87. 87.
    Prill, D.: The divisor class groups of some rings of holomorphic functions. Math. Z. 121, 58–80 (1971). Zbl. 208.352MathSciNetzbMATHGoogle Scholar
  88. 88.
    Ramis, J.-P.: Sous-ensembles analytiques d’une variété banachique complexe. Springer, Berlin (1970). Zbl. 212.428zbMATHGoogle Scholar
  89. 89.
    Ramis, J.-P.: Théorèmes de séparation et de finitude pour l’homologie et la cohomologie des espaces (p, g)-convex-concaves. Ann Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 27, 933–997 (1974). Zbl. 327.32001MathSciNetGoogle Scholar
  90. 90.
    Remmert, R.: Sur les espaces analytiques holomorphiquement separables et holomorphiquement convexes. C. R. Acad. Sci. Paris 243, 118–121 (1956). Zbl. 70.304MathSciNetzbMATHGoogle Scholar
  91. 91.
    Remmert, R.: Holomorphe and meromorphe Abbildungen komplexer Raume, Math. Ann. 133, 328–370 (1957) Zbl.53.53.MathSciNetzbMATHGoogle Scholar
  92. 92.
    Serre, J-P.: Quelques problèmes globaux relatifs aux variétiès de Stein. Colloque sur les fonctions analytiques de plusieurs variables complexes tenu à Bruxelles, Liège, G. Thone, Masson et C-ie, 57–68 Paris (1953). Zbl. 53.53Google Scholar
  93. 93.
    Serre, J-P.: Faisceaux algébriques cohérents, Ann. Math. 61, 197–278 (1955). Zbl. 67.162zbMATHGoogle Scholar
  94. 94.
    Serre. J-P.: Géométrie algébrique et géométrie analytique. Ann. Inst. Fourier 6, 1–42 (1956).Zbl. 75.304Google Scholar
  95. 95.
    Shabat, B.V.: Introduction to complex analysis. Part I: Functions of one variable (Russian) Nauka, Moscow (1985) Zbl. 574.30001, Part II: Functions of several variables (Russian) Nauka, Moscow (1985), Zbl. 578.32001Google Scholar
  96. 96.
    Simha, R.R.: On the complement of a curve on a Stein space of dimension two. Math. Z. 82, 63–66(1963).Zbl. 112.311MathSciNetGoogle Scholar
  97. 97.
    Siu, Yum-Tong: Non-countable dimensions of cohomology groups of analytic sheaves and domains of holomorphy. Math. Z. 102, 17–29 (1967). Zbl. 167.68MathSciNetzbMATHGoogle Scholar
  98. 98.
    Siu, Yum-Tong: A proof of Cartan’s theorems A and B. Tôhoku Math. J. 20, 207–213 (1968). Zbl. 176.38MathSciNetzbMATHGoogle Scholar
  99. 99.
    Siu, Yum-Tong: All plane domains are Banach-Stein. Manuscr. Math. 14, 101–105 (1974).MathSciNetzbMATHGoogle Scholar
  100. 100.
    Siu, Yum-Tong: Holomorphic fiber bundles whose fibers are bounded Stein domains with zero first Betti number. Math. Ann. 219, 171–192 (1976). Zbl. 318.32010MathSciNetzbMATHGoogle Scholar
  101. 101.
    Siu, Yum-Tong: Every Stein subvariety admits a Stein neighborhood. Invent. Math. 38, 89–100 (1976).MathSciNetzbMATHGoogle Scholar
  102. 102.
    Skoda, H.: Fibrés holomorphes à base et à fibre de Stein. Invent. Math. 43, 97–107 (1977). Zbl. 365.32018MathSciNetzbMATHGoogle Scholar
  103. 103.
    Steenrod, N.E.: The topology of fibre bundles. Princeton Univ. Press, Princeton (1951). Zbl. 54.71zbMATHGoogle Scholar
  104. 104.
    Stehlé, J.-L, Plongements du disque dans C2. Seminaire P. Lelong (analyse), année 1970/1971. Springer Lect. Notes Math. 275, 119–130 (1972). Zbl. 245.32007Google Scholar
  105. 105.
    Stehlé, J.-L.: Fonctions plurisousharmoniques et convexité holomorphe de certains fibrés analytique. Séminaire P. Lelong (Analyse), année 1973/1974, Springer Lect. Notes Math. 474, 155–179 (1975). Zbl. 309.32011Google Scholar
  106. 106.
    Stein, K.: Analytische Funktionen mehrerer komplexer Veränderlichen zu vorgegebenen Periodizitätsmoduln und das zweite Couinsche Problem. Math. Ann. 123, 201–222 (1951).MathSciNetzbMATHGoogle Scholar
  107. 107.
    Stein, K.: Uberlagerungen holomorph-vollständiger komplexer Räume. Arch. Math. 7, 354–361 (1956). Zbl. 72.80zbMATHGoogle Scholar
  108. 108.
    Succi, F. Il teorema di de Rham olomorpho nel caso relativo. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat, Nat. 43, 784–791 (1968).Google Scholar
  109. 109.
    Tognoli, A.: Una caratterizzazione dei moduli della sezioni globali di un fascio coerente su uno spazio di Stein. Boll. Unione Mat. Ital. 8, 181–197 (1973). Zbl. 291.32021MathSciNetzbMATHGoogle Scholar
  110. 110.
    Vladimirov, V.S.: Methods of the theory of functions of several complex variables. Nauka, Moscow (1964); English transi: MIT Press, Cambridge (1966). Zbl. 125.319Google Scholar
  111. 111.
    Weil, A.: Introduction à’I’étude des variétés Kâhlériennes. Hermann, Paris (1958). Zbl. 137.411Google Scholar
  112. 112.
    Weyl, H.: Die Idee der Riemannschen Fläche, 3rd ed, Teubner, Stuttgart (1955). Zbl. 68.60zbMATHGoogle Scholar
  113. 113.
    Wiegmann, K.W.: Einbettungen komplexer Räume in Zahlenräume. Invent. Math. 1, 229–242 (1966) Zbl. 148.320MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • A. L. Onishchick

There are no affiliations available

Personalised recommendations