Skip to main content

A Nekhoroshev-Like Theory of Classical Particle Channeling in Perfect Crystals

  • Chapter

Part of the book series: Dynamics Reported ((DYNAMICS,volume 2))

Abstract

Some twenty years ago, N.N. Nekhoroshev announced a theorem in Hamiltonian perturbation theory which may be paraphrased as follows.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V.I. Arnol’d, Proof of A.N. Kolmogojov’s theorem on the preservation of quasi- periodic motions under small perturbations of the Hamiltonian, Russian Math. Surveys 18 (5) (1963), 9–36 (Russian original: Usp. Mat. Nauk. SSSR 18 (5) (1963), 13–40)

    Article  MATH  Google Scholar 

  2. V.I. Arnol’d, Small denominators and problems of stability of motion in classical and celestial mechanics, Russian Math. Surveys 18 (6) (1963), 85–191 (Russian original: Usp. Mat. Nauk. SSSR 18 (6) (1963), 91–192)

    Article  MATH  Google Scholar 

  3. V.I. Arnol’d, Instability of dynamical systems with many degrees of freedom, Soviet Math. Dokl. 5 (1964), 581–585 (Russian original: Dokl. Akad. Nauk. SSSR 156 (1964), 9–12)

    Google Scholar 

  4. V.I. Arnol’d, A stability problem and ergodic properties of classical dynamical systems, Amer. Math. Soc. Trans. (2) 70 (1968), 5–11 (Russian original: in Proc. Inter. Congress Mathematicians pp. 387–392, Mir, Moscow, 1968)

    MATH  Google Scholar 

  5. V.I. Arnol’d, Ordinary Differential Equations, MIT, Cambridge, Mass., 1973 (Russian original: Nauka, Moscow, 1973)

    Google Scholar 

  6. V.I. Arnol’d, Mathematical Methods of Classical Mechanics, Springer, New York, 1978 (Russian original: Nauka, Moscow, 1974)

    Google Scholar 

  7. A. Bazzani, S. Marmi and G. Turchetti, Nekhoroshev estimates for isochronous nonresonant symplectic maps, Celestial Mech. Dynam. Astronom. 47 (1989–90), 333–359

    Article  MathSciNet  Google Scholar 

  8. G. Benettin, L. Galgani and A. Giorgilli, A proof of Nekhoroshev’s theorem for the stability times in nearly integrable Hamiltonian systems, Celestial Mech. 37 (1985), 1–25

    Article  MathSciNet  MATH  Google Scholar 

  9. G. Benettin, L. Galgani and A. Giorgilli, Exponential law for the equipartition times among translational and vibrational degrees of freedom, Phys. Lett. A 120 (1) (1987), 23–27

    Article  MathSciNet  Google Scholar 

  10. G. Benettin, L. Galgani and A. Giorgilli, Realization of holonomic constraints and freezing of high frequency degrees of freedom in the light of classical perturbation theory, Part I, Comm. Math. Phys. 113 (1987), 87–103; ibid., Part II, Comm. Math. Phys. 121 (1989)., 557–601

    Article  MathSciNet  MATH  Google Scholar 

  11. G. Benettin and G. Gallavotti, Stability of motion near resonances in quasi- integrable Hamiltonian systems, J. Stat. Phys. 44 (1986), 293–338

    Article  MathSciNet  MATH  Google Scholar 

  12. R.A. Carrigan and J.A. Ellison, Eds. Relativistic Channeling, Plenum, New York, 1987

    Google Scholar 

  13. A. Celletti and A. Giorgilli, On the stability of the Lagrange points in the spatially restricted problem of three bodies, Celestial Mech. Dynam. Astronom. 50 (1991), 31–58

    Article  MathSciNet  MATH  Google Scholar 

  14. B.V. Chirikov, A universal instability of many dimensional oscillator systems, Phys. Rep. 52 (1979), 265–379

    Article  MathSciNet  Google Scholar 

  15. A. Delshams, Porque la difusion de Arnol’d aparece genericamente en los sistemas hamiltonianos con màs de dos grados de liberdad, Thesis, University of Barcelona, 1984

    Google Scholar 

  16. R. Douady, Stabilité ou instabilité des points fixes elliptiques, Ann. scient. Ec. Norm. Sup., 4me série, tome 21 (1988), 1–46

    MathSciNet  MATH  Google Scholar 

  17. H.S. Dumas, A Mathematical Theory of Classical Particle Channeling in Perfect Crystals, PhD Thesis, University of New Mexico, 1988 (UMI, Ann Arbor, Michigan, 1988)

    Google Scholar 

  18. H.S. Dumas, Ergodization rates for linear flow on the torus, J. Dyn. Diff. Equations 3 (1991), 593–610

    Article  MathSciNet  MATH  Google Scholar 

  19. H.S. Dumas and J.A. Ellison, Nekhoroshev’s theorem, ergodicity, and the motion of energetic charged particles in crystals, in Essays on Quantum and Classical Dynamics, J.A. Ellison and H. Uberall, Eds., pp. 17–56, Gordon and Breach, Philadelphia, 1991

    Google Scholar 

  20. H.S. Dumas, J.A. Ellison and A.W. Sáenz, Axial channeling in perfect crystals, the continuum model and the method of averaging, Annals of Physics (NY) 209 (1991), 97–123

    Article  MATH  Google Scholar 

  21. L.C. Feldman, J.W. Mayer and S.T. Picraux, Material Analysis by Ion Channeling: Submicron Crystallography, Academic Press, New York, 1982

    Google Scholar 

  22. D.S. Gemmell, Channeling and related effects in the motion of charged particles through crystals, Rev. Mod. Phys. 46 (1974), 129–227

    Article  Google Scholar 

  23. A. Giorgilli, A. Delshams, E. Fontich, L. Galgani and C. Simó, Effective stability for a Hamiltonian system near an elliptic fixed point, with an application to the restricted three body problem, J. Diff. Eqs. 77 (1989), 167–198

    Article  MATH  Google Scholar 

  24. J. Glimm, Formal stability of Hamiltonian systems, Comm. Pure Appl. Math. 17 (1964), 509–526

    Article  MathSciNet  MATH  Google Scholar 

  25. J.K. Hale, Ordinary Differential Equations, Wiley-Interscience, New York, 1969

    MATH  Google Scholar 

  26. P.J. Holmes and J.E. Marsden, Melnikov’s method and Arnol’d diffusion for perturbations of integrable Hamiltonian systems, J. Math. Phys. 23 (4) (1982), 669–675

    Article  MathSciNet  MATH  Google Scholar 

  27. A.N. Kolmogorov, Preservation of conditionally periodic movements with small change in the Hamilton function, in Stochastic Behavior in Classical and Quantum Hamiltonian Systems, G. Casati and J. Ford, Eds., Lecture Notes in Physics 93 pp. 51–54, Springer, Berlin, 1979 (Russian original: Dokl. Akad. Nauk. SSSR 98 (4) (1954), 527–530)

    Chapter  Google Scholar 

  28. Ph. Lervig, J. Linhard and V. Nielsen, Quantal treatment of directional effects for energetic particles in crystal lattices, Nucl. Phys. A 96 (1967), 481

    Google Scholar 

  29. J. Lindhard, Influence of crystal lattice on motion of energetic charged particles, Mat. Fys. Medd. Dan. Vid. Selsk. 34, no. 14 (1965)

    Google Scholar 

  30. J. Lindhard, V. Nielsen and M. Scharff, Approximation method in classical scattering by screened Coulomb fields, Mat. Fys. Medd. Dan. Vid. Selsk. 36, no. 10, 1968

    Google Scholar 

  31. J.E. Littlewood, On the equilateral configuration in the restricted problem of three bodies, Proc. London Math. Soc. (3) 9 (1959), 342–372

    Article  MathSciNet  Google Scholar 

  32. J.E. Littlewood, The Lagrange configuration in celestial mechanics, Proc. London Math. Soc. (3) 9 (1959), 525–543

    Article  MathSciNet  MATH  Google Scholar 

  33. P. Lochak, Effective speed of Arnol’d’s diffusion and small denominators, Phys. Lett. A 143 (1) (1990), 39–42

    MathSciNet  Google Scholar 

  34. P. Lochak, Stabilité en temps exponentiels des systèmes hamiltoniens proches des systèmes integrables: résonances et orbites fermées (ENS preprint, 1990)

    Google Scholar 

  35. P. Lochak, Canonical perturbation theory through simultaneous approximation (ENS preprint, 1991)

    Google Scholar 

  36. P. Lochak and C. Meunier, Multiphase Averaging for Classical Systems With Applications to Adiabatic Theorems, Springer-Verlag, New York, 1988

    Book  MATH  Google Scholar 

  37. P. Lochak and A. Porzio, A realistic exponential estimate for a paradigm Hamiltonian, Annales IHP, Phys. théorique 51 (1989), 199–219

    MathSciNet  MATH  Google Scholar 

  38. L.M. Markus and K.R. Meyer, Generic Hamiltonian systems are neither integrable nor ergodic, Mem. Am. Math. Soc. 144 (1974)

    Google Scholar 

  39. J.K. Moser, Stabilitätsverhalten kanonischer differentialgleichungssysteme, Nachr. Akad. Wiss. Göttingen, Math. Phys. Kl. II (1955), 87–120

    Google Scholar 

  40. J.K. Moser, On invariant curves of area-preserving maps of an annulus, Nachr. Akad. Wiss. Göttingen, Math. Phys. Kl. II (1962), 1–20

    Google Scholar 

  41. N.N. Nekhoroshev, Behavior of Hamiltonian systems close to integrable, Funct. Anal. 5 (1971), 338–339 (Russian original: Fun. Anal. Pril. 5 (4) (1971), 82–84)

    Google Scholar 

  42. N.N. Nekhoroshev, Stable lower estimates for smooth mappings and for gradients of smooth functions, Math. USSR Sbornik 19 (3) (1973), 425–467 (Russian original: Mat. Sbornik 90 (132) (1973), 425–467)

    Article  Google Scholar 

  43. N.N. Nekhoroshev, An exponential estimate of the time of stability of nearly integrable Hamiltonian systems, Russian Math. Surveys 32 (6) (1977), 1–65 (Russian original: Usp. Mat. Nauk. SSSR 32 (6) (1977), 5–66)

    Article  MATH  Google Scholar 

  44. N.N. Nekhoroshev, An exponential estimate of the time of stability of nearly integrable Hamiltonian systems II, in Topics in Modern Mathematics, Petrovskii Seminar No. 5 (O.A. Oleinik, Ed.), Consultants Bureau, London, 1980 (Russian original: TV. Sem. Petrows. 5 (1979), 5–62)

    Google Scholar 

  45. J.H. Poincaré, Les méthodes nouvelles de la mécanique céleste, tome 1, Gauthier- Villars, Paris, 1892

    Google Scholar 

  46. J. Pöschel, On Nekhoroshev’s estimate for quasi-convex Hamiltonians, to appear in Math. Zeitschr.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Scott Dumas, H. (1993). A Nekhoroshev-Like Theory of Classical Particle Channeling in Perfect Crystals. In: Jones, C.K.R.T., Kirchgraber, U., Walther, H.O. (eds) Dynamics Reported. Dynamics Reported, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61232-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61232-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64755-0

  • Online ISBN: 978-3-642-61232-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics