Skip to main content

Dynamics of a Group I Ribozyme Detected by Spectroscopic Methods

  • Chapter
Catalytic RNA

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 10))

Abstract

Little is known about RNA dynamics, even though it is likely that dynamics are important for both folding and function. The ribozyme, L-21 ScaI, derived from the group I intron of Tetrahymena thermophila (Zaug et al. 1988; Kay and Inoue 1987) provides an excellent system for studying dynamics, since its secondary structure is known (Michel and Dujon 1983; Burke et al. 1987; Cech et al. 1994) and a good model is available for its three-dimensional structure (Michel and Westhof 1990). Moreover, spectroscopic probes have been developed that are sensitive to binding of substrate by this ribozyme (Sugimoto et al. 1989b; Bevilacqua et al. 1992; Kierzek et al. 1993). This permits detection of intermediates and measurement of rate constants for various interconversions. The effects of substitutions and of solution conditions on these rate constants give insights into relationships between structure and dynamics and function. The RNA motion most intensively studied thus far in this system is docking of substrate into the catalytic core of the ribozyme (Bevilacqua et al. 1992, 1993, 1994; Li et al. 1995; Li, Profenno and Turner, unpubl. results). This chapter reviews the methods and results of these studies, and discusses some future perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Banerjee AR, Turner DT (1995) The time dependence of chemical modification reveals slow steps in the folding of a group I ribozyme. Biochemistry 34: 6504–6512

    Article  PubMed  CAS  Google Scholar 

  • Banyasz JL, Stuehr JE (1973) Interactions of divalent metal ions with inorganic and nucleoside phosphates. III. Temperature dependence of the magnesium(II)-adenosine 5’-triphosphate, -adenosine 5’-diphosphate, and -cytidine 5’-diphosphate. J Am Chem Soc 95: 7226–7231

    Article  PubMed  CAS  Google Scholar 

  • Bass BL, Cech TR (1986) Ribozyme inhibitors: deoxyguanosine and dideoxyguanosine are competitive inhibitors of self-splicing of the Tetrahymena ribosomal ribonucleic acid precursors. Biochemistry 25: 4473–4477

    Article  PubMed  CAS  Google Scholar 

  • Beese LS, Steitz TA (1991) Structural basis for the 3’-5’-exonuclease activity of Escherichia coli DNA polymerase I: A 2 metal ion mechanism. EMBO J 10: 25–33

    PubMed  CAS  Google Scholar 

  • Beardsley K, Cantor CR (1970) Studies of transfer RNA tertiary structure by singlet-singlet energy transfer. Proc Natl Acad Sci USA 65: 39–46

    Article  PubMed  CAS  Google Scholar 

  • Bevilacqua PC, Turner DT (1991) Comparison of binding of mixed ribose-deoxyribose analogues of CUCU to a ribozyme and to GGAGAA by equilibrium dialysis: evidence for ribozyme specific interactions with 2’ OH groups. Biochemistry 30: 10632–10640

    Article  PubMed  CAS  Google Scholar 

  • Bevilacqua PC, Kierzek R, Johnson KA, Turner DT (1992) Dynamics of ribozyme binding of substrate revealed by fluorescence-detected stopped-flow. Science 258: 1355–1358

    Article  PubMed  CAS  Google Scholar 

  • Bevilacqua PC, Johnson KA, Turner DT (1993) Cooperative and anticooperative binding to a ribozyme. Proc Natl Acad Sci USA 90: 8357–8361

    Article  PubMed  CAS  Google Scholar 

  • Bevilacqua PC, Li Y, Turner DT (1994) Fluorescence-detected stopped flow with a pyrene labeled substrate reveals that guanosine facilitates docking of the 5’ cleavage site into a high free energy binding mode in the Tetrahymena ribozyme. Biochemistry 33: 11340–11348

    Article  PubMed  CAS  Google Scholar 

  • Burke JM, Belfort M, Cech TR, Davies RW, Schweyen RJ, Shub DA, Szostak JW, Tabak HF (1987) Structural conventions for group I introns. Nucl Acids Res 18: 7217–7221

    Article  Google Scholar 

  • Cardullo RA, Agrawal S, Flores C, Zamecnik PC, Wolf DE (1988) Detection of nucleic acid hybridization by nonradiative fluorescence energy transfer. Proc Natl Acad Sci USA 85: 8790–8794

    Article  PubMed  CAS  Google Scholar 

  • Cech TR, Damberger S, Gutell RR (1994) Representation of the secondary and tertiary structure of group I introns. Nat Struct Biol 1: 273–280

    Article  PubMed  CAS  Google Scholar 

  • Christian EL, Yarus M (1993) Metal coordination sites that contribute to structure and catalysis in the group I intron from Tetrahymena. Biochemistry 32: 4475–4480

    Article  PubMed  CAS  Google Scholar 

  • Fersht AR (1985) Enzyme-substrate complementarity and the use of binding energy in catalysis. Enzyme structure and mechanism, 2nd edn, chap 12. Freeman, New York

    Google Scholar 

  • Forster T (1959) Transfer Mechanisms of Electronic Excitation. Discuss Faraday Soc 27: 7–17

    Article  Google Scholar 

  • Freemont PS, Friedman JM, Beese LS, Sanderson MR, Steitz TA (1988) Cocrystal structure of an editing complex of Klenow fragment with DNA. Proc Natl Acad Sci USA 85: 8924–8928

    Article  PubMed  CAS  Google Scholar 

  • Herschlag D (1992) Evidence for processivity and two-step binding of the RNA substrate from studies of J1/2 mutants of the Tetrahymena ribozyme. Biochemistry 31: 1386–1399

    Article  PubMed  CAS  Google Scholar 

  • Herschlag D, Cech TR (1990) Catalysis of RNA cleavage by the Tetrahymena thermophila ribozyme 1. Kinetic description of the reaction of an RNA substrate complementary to the active site. Biochemistry 29: 10159–10171

    Article  PubMed  CAS  Google Scholar 

  • Jencks WP (1975) Binding energy, specificity, and enzymic catalysis: The Circe effect. Adv Enzymol 43: 219–410

    PubMed  CAS  Google Scholar 

  • Johnson KA (1992) Transient-state kinetic analysis of enzyme reaction pathways. In: Sigman DS (ed) The enzymes, vol 20, 3rd edn, chap 1. Academic Press, San Diego

    Google Scholar 

  • Kay PS, Inoue T (1987) Catalysis of splicing-related reactions between dinucleotides by a ribozyme. Nature 327: 343–346

    Article  PubMed  CAS  Google Scholar 

  • Kierzek R, Turner DH, Li Y, Bevilacqua PC (1993) 5′-Amino pyrene provides a sensitive, non-perturbing fluorescent probe of RNA secondary and tertiary structure formation. J Am Chem Soc 115:4985–4992

    Article  CAS  Google Scholar 

  • LeCuyer KA, Crothers DM (1994) Kinetics of an RNA conformational switch. Proc Natl Acad Sci USA 91: 3373–3377

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Bevilacqua PC, Mathews D, Turner DH (1995) Thermodynamic and activation parameters for binding of a pyrene-labeled substrate by the Tetrahymena ribozyme: docking is not diffusion-controlled and is driven by a favorable entropy change. Biochemistry 34: 14394–14399

    Article  PubMed  CAS  Google Scholar 

  • Manoharan M, T:ivel KL, Zhao M, Nafisi K, Netzel TL (1996) Base-sequence dependence of emission lifetimes for DNA oligomers and duplexes covalently labeled with pyrene: relative electron-transfer quenching efficiencies of A, G, C, and T nucleosides toward pyrene. J Phys Chem (in press)

    Google Scholar 

  • McConnell TS, Cech TR, Herschlag D (1993) Guanosine binding to the Tetrahymena ribozyme: thermodynamic coupling with oligonucleotide binding. Proc Natl Acad Sci 90: 8362–8366

    Article  PubMed  CAS  Google Scholar 

  • Michel F, Westhof E (1990) Modelling of the three-dimensional architecture of group I catalytic introns based on comparative sequence analysis. J Mol Biol 216: 585–610

    Article  PubMed  CAS  Google Scholar 

  • Michel F, Dujon B (1983) Conservation of RNA secondary structures in two intron families including mitochondrial-, chloroplast-and nuclear-encoded members. EMBO J 2: 33–38

    PubMed  CAS  Google Scholar 

  • Moran S, Kierzek R, Turner DT (1993) Binding of guanosine and 3’ splice site analogues to a group I ribozyme: interactions with functional groups of guanosine and with additional nucleotides. Biochemistry 32: 5247–5256

    Article  PubMed  CAS  Google Scholar 

  • Narlikar GJ, Gopalakrishnan V, McConnell TS, Usman N, Herschlag D (1995) Use of binding energy by an RNA enzyme for catalysis by positioning and substrate destabilization. Proc Natl Acad Sci USA 92: 3668–3672

    Article  PubMed  CAS  Google Scholar 

  • Netzel TL, Zhao M, Nafisi K, Headrick J, Sigman MS, Eaton BE (1995) Photophysics of 2’-deoxyuridine (dU) nucleosides covalently substituted with either 1-pyrenyl or 1-pyrenoyl: observation of pyrene-to-nucleoside charge-transfer emission in 5-(1pyrenyl)-dU. J Am Chem Soc 117: 9119–9128

    Article  CAS  Google Scholar 

  • O’Connor D, Shafirovich VY, Geacintov NE (1994) Influence of adduct sterochemistry and hydrogen-bonding solvents on photoinduced charge transfer in a covalent benzo[a]pyrene diol epoxide-nucleoside adduct on picosecond time scales. J Phys Chem 98: 9831–9839

    Article  Google Scholar 

  • Perkins TA, Goodman JL, Kool ET (1993) Accelerated displacement of duplex DNA strands by a synthetic circular oligodeoxynucleotide. J Chem Soc Chem Commun 215–216

    Google Scholar 

  • Pyle AM, Cech TR (1991) Ribozyme recognition of RNA by tertiary interactions with specific ribose 2’-OH groups. Nature 350: 628–631

    Article  PubMed  CAS  Google Scholar 

  • Steitz TA, Steitz J (1993) A general two-metal-ion mechanism for catalytic RNA. Proc Natl Acad Sci USA 90: 6498–6502

    Article  PubMed  CAS  Google Scholar 

  • Strobel SA, Cech TR (1993) Tertiary interactions with the internal guide sequence mediate docking of the Pl helix into the catalytic core of the Tetrahymena ribozyme. Biochemistry 32: 13593–13604

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto N, Tomka M, Kierzek R, Bevilacqua PC, Turner DH (1989a) Effects of substrate structure on the kinetics of circle opening reactions of the self-splicing intervening sequence from Tetrahymena thermophila: evidence for substrate and Mgt+ binding interactions. Nucl Acids Res 17: 355–371

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto N, Sasaki M, Kierzek R, Turner DH (1989b) Binding of a fluorescent oligonucleotide to a circularized intervening sequence from Tetrahymena thermophila. Chem Lett 2223–2226

    Google Scholar 

  • Turner DH (1986) Temperature-jump methods in “Investigation of rates and mechanisms of reactions, Part II,” 4th edn. In: Bernasconi CF (ed) Techniques of chemistry series, chap 3. Wiley, NY

    Google Scholar 

  • Turner DT, Sugimoto N, Freier SM (1988) RNA structure prediction. Annu Rev Biophys Biophys Chem 17: 167–192

    Article  PubMed  CAS  Google Scholar 

  • Tuschl T, Gohlke C, Jovin TM, Westhof E, Eckstein F (1994) 3-Dimensional model for the hammerhead ribozyme based on fluorescence measurements. Science 266:785–789

    Article  PubMed  CAS  Google Scholar 

  • Wang J-F, Cech TR (1994) Metal ion dependence of active site structure of the Tetrahymena ribozyme revealed by site-specific photocrosslinking. J Am Chem Soc 116: 4178–4182

    Article  CAS  Google Scholar 

  • Wang J-F, Downs WD, Cech TR (1993) Movement of the guide sequence during RNA catalysis by a group I ribozyme. Science 260: 504–508

    Article  PubMed  CAS  Google Scholar 

  • Zaug AJ, Grosshans CA, Cech TR (1988) Sequence-specific endoribonuclease activity of the Tetrahymena ribozyme: enhanced cleavage of certain oligonucleotide substrates that form mismatched ribozyme-substrate complexes. Biochemistry 27: 8924–8931

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Turner, D.H., Li, Y., Fountain, M., Profenno, L., Bevilacqua, P.C. (1996). Dynamics of a Group I Ribozyme Detected by Spectroscopic Methods. In: Eckstein, F., Lilley, D.M.J. (eds) Catalytic RNA. Nucleic Acids and Molecular Biology, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61202-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61202-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-62679-4

  • Online ISBN: 978-3-642-61202-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics