Skip to main content

Mechanistic Studies on Hammerhead Ribozymes

  • Chapter
Catalytic RNA

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 10))

Abstract

Catalytic RNAs include group I and II introns; the RNA subunit of RNase P; hammerhead, hairpin, and hepatitis delta virus ribozymes; and ribosomal RNA (Altman 1989; Cech 1989; Michel et al. 1989; Noller et al. 1992; Symons 1992; Bratty et al. 1993; Gesteland and Atkins 1993). Of all these catalytic RNAs, the hammerhead ribozyme is the smallest. Naturally occurring hammerhead ribozymes were identified initially within RNA viruses and they act in cis during viral replication by the rolling circle mechanism (Symons 1989, 1992; Bratty et al. 1993). Hammerhead ribozymes have been engineered in such a way that they can act in trans to cleave other RNA molecules (Uhlenbeck 1987; Haseloff and Gerlach 1988). The trans-acting hammerhead ribozyme developed by Haseloff and Gerlach (1988) consists of an antisense section (stems I and III) and a catalytic domain with a flanking stem II and loop section (Fig. 1). Because of the small size of hammerhead ribozymes, they are very suitable for mechanistic studies, being good representatives of catalytic RNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altman S (1989) Ribonuclease P: an enzyme with a catalytic RNA subunit. Adv Enzymol 62: 1–36

    PubMed  CAS  Google Scholar 

  • Anslyn E, Breslow R (1989) Proton inventory of a bifunctional ribonuclease model. J Am Chem Soc 111: 8931–8932

    Article  CAS  Google Scholar 

  • Bell RP, Kuhn AT (1963) Dissociation constants of some acids in deuterium oxide. Trans Faraday Soc 59: 1789–1793

    Article  CAS  Google Scholar 

  • Bratty J, Chartrand P, Ferbeyre G, Cedergren R (1993) The hammerhead RNA domain, a model ribozyme. Biochim Biophys Acta 1216: 345–359

    PubMed  CAS  Google Scholar 

  • Cech TR (1989) Self-splicing and enzymatic activity of an intervening sequence RNA from Tetrahymena (Nobel Lecture). Angew Chem Int Ed Engl 29: 759–768

    Article  Google Scholar 

  • Dahm SC, Uhlenbeck OC (1991) Role of divalent metal ions in the hammerhead RNA cleavage reaction. Biochemistry 30: 9464–9469

    Article  PubMed  CAS  Google Scholar 

  • Dahm SC, Derrick WB, Uhlenbeck OC (1993) Evidence for the role of solvated metal hydroxide in the hammerhead cleavage mechanism. Biochemistry 32: 13040–13045

    Article  PubMed  CAS  Google Scholar 

  • Gesteland RF, Atkins JF (eds) (1993) The RNA world. Cold Spring Harbor Lab Press, Plainview, New York

    Google Scholar 

  • Haseloff J, Gerlach WL (1988) Simple RNA enzymes with new and highly specific endonuclease activities. Nature 334: 585–591

    Article  PubMed  CAS  Google Scholar 

  • Hertel KJ, Pardi A, Uhlenbeck OC, Koizumi M, Ohtsuka E, Uesugi S, Cedergren R, Eckstein F, Gerlach WL, Hodgson R, Symons RH (1992) Numbering system for the hammerhead. Nucl Acids Res 20: 3252

    Article  PubMed  CAS  Google Scholar 

  • Hertel KJ, Herschlag D, Uhlenbeck OC (1994) A kinetic and thermodynamic frame-work for the hammerhead ribozyme reaction. Biochemistry 33: 3374–3385

    Article  PubMed  CAS  Google Scholar 

  • Jencks WP (ed) (1969) Catalysis in chemistry and enzymology. McGraw-Hill, New York, pp 250–253

    Google Scholar 

  • Kakihana H, Amaya T, Maeda M (1970) The hydrolysis of the copper ( II) ion in heavy water. Bull Chem Soc Jpn 43: 3155–3158

    Article  CAS  Google Scholar 

  • Koizumi M, Ohtsuka E (1991) Effects of phosphorothioate and 2-amino groups in hammerhead ribozymes on cleavage rates and Mg2+ binding. Biochemistry 30: 5145–5150

    Article  PubMed  CAS  Google Scholar 

  • Matta SM, Vo DT (1986) Proton inventory of the second step of ribonuclease catalysis. J Am Chem Soc 108: 5316–5318

    Article  CAS  Google Scholar 

  • Michel F, Umesono K, Ozeki H (1989) Comparative and functional anatomy of group II catalytic introns-a review. Gene 82: 5–30

    Article  PubMed  CAS  Google Scholar 

  • Noller HF, Hoffarth V, Zimniak L (1992) Unusual resistance of peptidyl transferase to protein extraction methods. Science 256: 1416–1419

    Article  PubMed  CAS  Google Scholar 

  • Pentz L, Thornton ER (1967) Isotope effects on the basicity of 2-nitrophenoxide, 2–4dinitrophenoxide, and imidazole in protium oxide-deuterium oxide mixtures. J Am Chem Soc 89: 6931–6938

    Article  CAS  Google Scholar 

  • Piccirilli JA, Vyle JS, Caruthers MH, Cech TR (1993) Metal ion catalysis in the Tetrahymena ribozyme reaction. Nature 361: 85–88

    Article  PubMed  CAS  Google Scholar 

  • Pyle AM (1993) Ribozymes: a distinct class of metalloenzymes. Science 261: 709–714

    Article  PubMed  CAS  Google Scholar 

  • Sawata S, Shimayama T, Komiyama M, Kumar PKR, Nishikawa S, Taira K (1993) Enhancement of the cleavage rates of DNA-armed hammerhead ribozymes by various divalent metal ions. Nucl Acids Res 21: 5656–5660

    Article  PubMed  CAS  Google Scholar 

  • Sawata S, Komiyama M, Taira K (1995) Kinetic evidence based on solvent isotope effects for the nonexistence of a proton-transfer process in reactions catalyzed by a hammerhead ribozyme: implication to the double-metal-ion mechanism of catalysis. J Am Chem Soc 117: 2357–2358

    Article  CAS  Google Scholar 

  • Shiiba T, Komiyama M (1992) Phenylester of adenosine 3′-phosphate as a novel probe for the rate-limiting step in RNA hydrolysis. Tetrahedron Lett 33: 5571–5574

    Article  CAS  Google Scholar 

  • Shimayama T, Nishikawa F, Nishikawa S, Taira K (1993) Nuclease-resistant chimeric ribozymes containing deoxyribonucleotides and phosphorothioate linkages. Nucl Acids Res 21: 2605–2611

    Article  PubMed  CAS  Google Scholar 

  • Shimayama T, Nishikawa S, Taira K (1995) Generality of the NUX rule: kinetic analysis of the results of systematic mutations in the trinucleotide at the cleavage site of hammerhead ribozymes. Biochemistry 34: 3649–3654

    Article  PubMed  CAS  Google Scholar 

  • Slim G, Gait MJ (1991) Configurationally defined phosphorothioate-containing oligoribonucleotides in the study of the mechanism of cleavage of hammerhead ribozyme. Nucl Acids Res 19: 1183–1188

    Article  PubMed  CAS  Google Scholar 

  • Steitz TA, Steitz JA (1993) A general two-metal-ion mechanism for catalytic RNA. Proc Natl Acad Sci USA 90: 6498–6502

    Article  PubMed  CAS  Google Scholar 

  • Storer JW, Uchimaru T, Tanabe K, Uebayasi M, Nishikawa S, Taira K (1991) Existence of a marginally stable intermediate during the base-catalyzed methanolysis of ethylene phosphate and ab initio studies of the monohydration of the pentacoordinated oxyphophorane intermediate. J Am Chem Soc 113: 5216–5219

    Article  CAS  Google Scholar 

  • Symons RH (1989) Self-cleavage of RNA in the replication of small pathogens of plants and animals. Trend Biochem Sci 14: 445–450

    Article  PubMed  CAS  Google Scholar 

  • Symons RH (1992) Small catalytic RNAs. Annu Rev Biochem 61: 641–671

    Article  PubMed  CAS  Google Scholar 

  • Taira K, Nishikawa S (1992) Construction of several kinds of ribozymes: their reactivities and utilities. In: Erickson RP, Izant JG (eds) Gene Regulation: Biology of Antisense RNA and DNA. Raven Press, New York, pp 35–54

    Google Scholar 

  • Taira K, Uebayasi M, Maeda H, Furukawa K (1990) Energetics of RNA cleavage: implications for the mechanism of action of ribozymes. Protein Engin 3: 691–701

    Article  CAS  Google Scholar 

  • Taira K, Uchimaru T, Tanabe K, Uebayasi M, Nishikawa S (1991) Rate-limiting P0(5′) bond cleavage of RNA fragment: ab initio molecular orbital calculations on the base-catalyzed hydrolysis of phosphate. Nucl Acids Res 19: 2747–2753

    Article  PubMed  CAS  Google Scholar 

  • Taira K, Uchimaru T, Storer JW, Yelimiena A, Uebayasi M, Tanabe K (1993) Properties of dianionic oxyphosphorane intermediates: implication to the reaction profile for base-catalyzed RNA hydrolysis. J Org Chem 58: 3009–3017

    Article  CAS  Google Scholar 

  • Takagi Y, Taira K (1995) Temperature-dependent change in the rate-determining step in a reaction catalyzed by a hammerhead ribozyme. FEBS Lett 361: 273–276

    Article  PubMed  CAS  Google Scholar 

  • Uchimaru T, Tanabe K, Nishikawa S, Taira K (1991) Ab initio studies of a marginally stable intermediate in the base-catalyzed methanolysis of dimethyl phosphate and nonexistence of the stereoelectronically unfavorable transition state. J Am Chem Soc 113: 4351–4353

    Article  CAS  Google Scholar 

  • Uchimaru T, Uebayasi M, Tanabe K, Taira K (1993) Theoretical analyses on the role of Mg2+ ions in ribozyme reaction. FASEB J 7: 137–142

    PubMed  CAS  Google Scholar 

  • Uchimaru T, Tsuzuki S, Storer JW, Tanabe K, Taira K (1994) Reconsideration of the stereoelectronic effect in oxyphosphorane species. J Org Chem 59: 1835–1843

    Article  CAS  Google Scholar 

  • Uchimaru T, Uebayasi M, Hirose T, Tsuzuki S, Yliniemela A, Tanabe K, Taira K (1996) The electrostatic interactions in the factors that determine the rate of pseudorotation processes in oxyphosphorane intermediates: implication to the roles of metal ions in enzymatic RNA cleavage reactions. J Org Chem (in press)

    Google Scholar 

  • Uebayasi M, Uchimaru T, Koguma T, Sawata S, Shimayama T, Taira K (1994) Theoretical and experimental considerations on the hammerhead ribozyme reactions: divalent magnesium ion-mediated cleavage of phosphorus-oxygen bonds. J Org Chem 59: 7414–7420

    Article  CAS  Google Scholar 

  • Uhlenbeck OC (1987) A small catalytic oligonucleotide. Nature 328: 596–600

    Article  PubMed  CAS  Google Scholar 

  • Yarus M (1993) How many catalytic RNAs? Ions and the Cheshire cat conjecture. FASEB J 7: 31–39

    PubMed  CAS  Google Scholar 

  • Yelimiena A, Uchimaru T, Tanabe K, Taira K (1993) Do pentacoordinate oxyphosphorane intermediates always exist? J Am Chem Soc 115: 3032–3033

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kumar, P.K.R., Zhou, D.M., Yoshinari, K., Taira, K. (1996). Mechanistic Studies on Hammerhead Ribozymes. In: Eckstein, F., Lilley, D.M.J. (eds) Catalytic RNA. Nucleic Acids and Molecular Biology, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61202-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61202-2_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-62679-4

  • Online ISBN: 978-3-642-61202-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics