Skip to main content

The Hammerhead Ribozyme

  • Chapter

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 10))

Abstract

It was 10 years ago that the hammerhead ribozyme catalytic RNA motif was first detected in certain small satellite and viroid RNAs (for reviews see Symons 1992 and Bratty et al. 1993). Its two-dimensional representation (Fig. 1) has now been transformed into a three-dimensional model by the application of X-ray crystallography (Pley et al. 1994; Scott et al. 1995) (see also chapter by McKay), fluorescence resonance energy transfer (FRET) measurements (Tuschl et al. 1994), gel electrophoresis (Bassi et al. 1995), and transient electric birefringence measurements (Amiri and Hagerman 1994). In the past decade, the potential of ribozymes for the inhibition of gene expression has been demonstrated (for a review see Marschall et al. 1994). Particular examples are discussed in the chapters by Arndt and Atkins, Bertrand and Rossi, Sproat, Sun et al., Welch et al., and Usman and Stinchcomb, this Vol. This application has been successfully extended to the study of transgenic animals containing a hammerhead ribozyme gene targeted against the gene of interest (Heinrich et al. 1993; Zhao and Pick 1993; Efrat et al. 1994; Larsson et al. 1994; see also L’Huillier, this Vol.).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ali M, Lemoine NR, Ring CJA (1994) The use of DNA viruses as vectors for gene therapy. Gene Ther 1: 367–384

    PubMed  CAS  Google Scholar 

  • Altman S (1993) RNA enzyme-directed gene therapy. Proc Natl Acad Sci USA 90: 10898–10900

    Article  PubMed  CAS  Google Scholar 

  • Amiri KMA, Hagerman PJ (1994) Global conformation of a self-cleaving hammerhead RNA. Biochemistry 33: 13172–13177

    Article  PubMed  CAS  Google Scholar 

  • Atkins D, Gerlach WL (1994) Artificial ribozyme and antisense gene-expression in Saccharomyces cerevisiae. Antisense Res Dev 4: 109–117

    PubMed  CAS  Google Scholar 

  • Aurup H, Heidenreich O, Eckstein F (1995) Stabilized RNA analogs for antisense and ribozyme applications. In: Akhtar S (ed) Delivery strategies for antisense oligonucleotide therapeutics. CRC Press, Boca Raton, p 161

    Google Scholar 

  • Bassi GS, Møllegaard N-E, Murchie AIH, von Kitzing E, Lilley DMJ (1995) Ionic interactions and the global conformation of the hammerhead ribozyme. Nat Struct Biol 2: 45–55

    Article  PubMed  CAS  Google Scholar 

  • Beelman CA, Parker R (1995) Degradation of mRNA in eukaryotes. Cell 81: 179–183

    Article  PubMed  CAS  Google Scholar 

  • Beigelman L, Karpeisky A, Usman N (1994) Synthesis of 1-deoxy-D-ribofuranose phosphoramidite and the incorporation of abasic nucleotides in stem-loop II of a hammerhead ribozyme. Bioorg Med Chem Lett 4: 1715–1720

    Article  CAS  Google Scholar 

  • Benseler F, Fu D-J, Ludwig J, McLaughlin LW (1993) Hammerhead-like molecules containing non-nucleoside linkers are active RNA catalysts. J Am Chem Soc 115: 8483–8484

    Article  CAS  Google Scholar 

  • Bertrand EL, Rossi JJ (1994) Facilitation of hammerhead ribozyme catalysis by the nucleocapsid protein of HIV-1 and the heterogeneous nuclear ribonucleoprotein Al. EMBO J 13: 2904–2912

    PubMed  CAS  Google Scholar 

  • Bertrand E, Pictet R, Grange T (1994) Can hammerhead ribozymes be efficient tools to inactivate gene function? Nucl Acids Res 22: 293–300

    Article  PubMed  CAS  Google Scholar 

  • Bratty J, Chartrand P, Ferbeyre G, Cedergren R (1993) The hammerhead RNA domain, a model ribozyme. Biochim Biophys Acta 1216: 345–359

    PubMed  CAS  Google Scholar 

  • Cameron FH, Jennings PA (1994) Multiple domains in a ribozyme construct confer increased suppressive activity in monkey cells. Antisense Res Dev 4: 87–94

    PubMed  CAS  Google Scholar 

  • Cech TR, Uhlenbeck OC (1994) Hammerhead nailed down. Nature 372: 39–40

    Article  PubMed  CAS  Google Scholar 

  • Christoffersen RE, Man JJ (1995) Ribozymes as human therapeutic agents. J Med Chem 38: 2023–2037

    Article  PubMed  CAS  Google Scholar 

  • Christoffersen RE, McSwiggen J, Konings D (1994) Application of computational technologies to ribozyme biotechnology products. J Mol Struct (Theochem) 311: 273–284

    Article  Google Scholar 

  • Cotten M, Birnstiel ML (1989) Ribozyme-mediated destruction of RNA in vivo. EMBO J 8: 3861–3866

    PubMed  CAS  Google Scholar 

  • Craig ME, Crothers DM, Doty P (1971) Relaxation kinetics of dimer formation by self-complementary oligonucleotides. J Mol Biol 62: 383–401

    Article  PubMed  CAS  Google Scholar 

  • Dahm SC, Uhlenbeck OC (1991) Role of divalent metal ions in the hammerhead RNA cleavage reaction. Biochemistry 30: 9464–9469

    Article  PubMed  CAS  Google Scholar 

  • Dahm SC, Derrick WB, Uhlenbeck OC (1993) Evidence for the role of solvated metal hydroxide in the hammerhead cleavage mechanism. Biochemistry 32: 13040–13045

    Article  PubMed  CAS  Google Scholar 

  • Denman RB (1993) Using RNAFOLD to predict the activity of small catalytic RNA. BioTechniques 15: 1090–1094

    PubMed  CAS  Google Scholar 

  • Deshler JO, Li HT, Rossi JJ, Castanotto D (1995) Ribozymes expressed within the loop of a natural antisense RNA form functional transcription terminators. Gene 155: 35–43

    Article  PubMed  CAS  Google Scholar 

  • Doudna JA (1994) Hammering out the shape of a ribozyme. Structure 2: 1271–1272

    Article  PubMed  CAS  Google Scholar 

  • Dropulic B, Jeang KT (1994) Intracellular susceptibility to ribozymes in a tethered substrate-ribozyme provirus model is not predicted by secondary structures of human immunodeficiency virus type 1 RNAs in vitro. Antisense Res Dev 4: 217–221

    PubMed  CAS  Google Scholar 

  • Efrat S, Leiser M, Wu YJ, Fuscodemane D, Emran OA, Surana M, Jetton TL, Magnuson MA, Weir G, Fleischer N (1994) Ribozyme-mediated attenuation of pancreatic β-cell glucokinase expression in transgenic mice results in impaired glucose-induced insulin secretion. Proc Natl Acad Sci USA 91: 2051–2055

    Article  PubMed  CAS  Google Scholar 

  • Eigen M, Hammes GG (1963) Elementary steps in enzyme reactions (as studied by relaxation spectroscopy). Adv Enzymol Rel Subj Biochem 25: 1–38

    Google Scholar 

  • Elkins DA, Rossi JJ (1995) Cellular delivery of ribozymes. In: Akhtar S (ed) Delivery strategies for antisense oligonucleotide therapeutics. CRC Press, Boca Raton, p 17

    Google Scholar 

  • Ellis J, Rogers J (1993) Design and specificity of hammerhead ribozymes against calretinin mRNA. Nucl Acids Res 21: 5171–5178

    Article  PubMed  CAS  Google Scholar 

  • Fedor MJ, Uhlenbeck OC (1990) Substrate sequence effects on “hammerhead” RNA catalytic efficiency. Proc Natl Acad Sci USA 87: 1668–1672

    Article  PubMed  CAS  Google Scholar 

  • Fedor MJ, Uhlenbeck OC (1992) Kinetics of intermolecular cleavage by hammerhead ribozymes. Biochemistry 31: 12042–12054

    Article  PubMed  CAS  Google Scholar 

  • Feng M, Cabrera G, Deshane J, Scanlon KJ, Curiel DT (1995) Neoplastic reversion accomplished by high efficiency adenoviral-mediated delivery of an anti-ras ribozyme. Cancer Res 55: 2024–2028

    PubMed  CAS  Google Scholar 

  • Ferbeyre G, Bratty J, Chen H, Cedergren R (1995) A hammerhead ribozyme inhibits ADE1 gene-expression in yeast. Gene 155: 45–50

    Article  PubMed  CAS  Google Scholar 

  • Fersht A (1977) Enzyme structure and mechanism. Freeman, Reading, San Francisco

    Google Scholar 

  • Forster AC, Symons RH (1987) Self-cleavage of plus and minus RNAs of virusoids and a structural model for the active sites. Cell 49: 211–220

    Article  PubMed  CAS  Google Scholar 

  • Freier SM, Kierzek R, Jaeger JA, Sugimoto N, Caruthers MH, Neilson T, Turner DH (1986) Improved free-energy parameters for predictions of RNA duplex stability. Proc Natl Acad Sci USA 83: 9373–9377

    Article  PubMed  CAS  Google Scholar 

  • Fu DJ, Benseler F, Mclaughlin LW (1994a) Hammerhead ribozymes containing non-nucleoside linkers are active RNA catalysts. J Am Chem Soc 116: 4591–4598

    Article  CAS  Google Scholar 

  • Fu DJ, Rajur SB, Mclaughlin LW (1994b) Activity of the hammerhead ribozyme upon inversion of the stereocenters for the guanosine 2’-hydroxyls. Biochemistry 33: 13903–13909

    Article  CAS  Google Scholar 

  • Gast. FU, Amiri KMA, Hagerman PJ (1994) Interhelix geometry of stem I and stem II of a self-cleaving hammerhead RNA. Biochemistry 33: 1788–1796

    Article  PubMed  CAS  Google Scholar 

  • Grasby JA, Gait MJ (1994) Synthetic oligonucleotides carrying site-specific modifications for RAN structure-function analysis. Biochimie 76: 1223–1234

    Article  PubMed  CAS  Google Scholar 

  • Greene KL, Jones RL, Li Y, Robinson H, Wang AH-J, Zon G, Wilson WD (1994) Solution structure of a GA mismatch DNA sequence, d(CCATGAATGG)2, determined by 2D NMR and structural refinement methods. Biochemistry 33: 1053–1062

    Article  PubMed  CAS  Google Scholar 

  • Haseloff J, Gerlach WL (1988) Simple RNA enzymes with new and highly specific endoribonuclease activity. Nature 334: 585–591

    Article  PubMed  CAS  Google Scholar 

  • Heidenreich O, Eckstein F (1992) Hammerhead ribozyme-mediated cleavage of the long terminal repeat of human immunodeficiency virus type 1. J Biol Chem 267: 1904–1909

    PubMed  CAS  Google Scholar 

  • Heidenreich O, Benseler F, Fahrenholz A, Eckstein F (1994) High activity and stability of hammerhead ribozymes containing 2’-modified pyrimidine nucleosides and phosphorothioates. J Biol Chem 269: 2131–2138

    PubMed  CAS  Google Scholar 

  • Heidenreich O, Kang S-H, Brown DA, Xu X, Swiderski P, Rossi JJ, Eckstein F, Nerenberg M (1995) Ribozyme-mediated RNA degradation in nuclei suspension. Nucl Acids Res 23: 2223–2228

    Article  PubMed  CAS  Google Scholar 

  • Heinrich JC, Tabler M, Louis C (1993) Attenuation of white gene expression in transgenic Drosophila melanogaster: possible role of a catalytic antisense RNA. Dev Genet 14: 258–265

    Article  PubMed  CAS  Google Scholar 

  • Hendry P, Moghaddam MJ, McCall MJ, Jennings PA, Ebel S, Brown T (1994) Using linkers to investigate the spatial separation of the conserved nucleotides A9 and G12 in the hammerhead ribozyme. Biochim Biophys Acta 1219: 405–412

    PubMed  CAS  Google Scholar 

  • Herschlag D, Khosla M, Tsuchihashi Z, Karpel RL (1994) An RNA chaperone activity of non-specific RNA binding proteins in hammerhead ribozyme catalysis. EMBO J 13: 2913–2924

    PubMed  CAS  Google Scholar 

  • Hertel KJ, Pardi A, Uhlenbeck OC, Koizumi M, Ohtsuka E, Uesugi S, Cedergren R, Eckstein F, Gerlach WL, Hodgson R, Symons RH (1992) Numbering system for the hammerhead. Nucl Acids Res 20: 3252

    Article  PubMed  CAS  Google Scholar 

  • Hertel KJ, Herschlag D, Uhlenbeck OC (1994) A kinetic and thermodynamic framework for the hammerhead ribozyme reaction. Biochemistry 33: 3374–3385

    Article  PubMed  CAS  Google Scholar 

  • Heus HA, Pardi A (1991) Nuclear magnetic resonance studies of the hammerhead ribozyme domain. J Mol Biol 217: 113–124

    Article  PubMed  CAS  Google Scholar 

  • Hodgson RAJ, Shirley NJ, Symons RH (1994) Probing the hammerhead ribozyme structure with ribonucleases. Nucl Acids Res 22: 1620–1625

    Article  PubMed  CAS  Google Scholar 

  • Homann M, Tabler M, Tzortzakaki S, Sczakiel G (1994) Extension of helix II of an HIV-1-directed hammerhead ribozyme with long antisense flanks does not alter kinetic-parameters in vitro but causes loss of the inhibitory potential in living cells. Nucl Acids Res 22: 3951–3957

    Article  PubMed  CAS  Google Scholar 

  • Jaeger JA, Turner DH, Zuker M (1989) Improved predictions of secondary structures for RNA. Proc Natl Acad Sci USA 86: 7706–7710

    Article  PubMed  CAS  Google Scholar 

  • Kiehntopf M, Esquivel EL, Brach MA, Herrmann F (1995) Ribozymes: Biology, biochemistry, and implications for clinical medicine. J Mol Med 73: 65–71

    Article  PubMed  CAS  Google Scholar 

  • Koizumi M, Ohtsuka E (1991) Effects of phosphorothioate and 2-amino groups in hammerhead ribozymes on cleavage rates and Mg2+ binding. Biochemistry 30: 5145–5150

    Article  PubMed  CAS  Google Scholar 

  • Koizumi M, Iwai S, Ohtsuka E (1988) Construction of a series of several self-cleaving RNA duplexes using synthetic 21-mers. FEBS Lett 228: 228–230

    Article  PubMed  CAS  Google Scholar 

  • Koizumi M, Kamiya H, Ohtsuka E (1993) Inhibition of c-Ha-ras gene expression by hammerhead ribozymes containing a stable C(UUCG)G hairpin loop. Biol Pharm Bull 16: 879–883

    Article  PubMed  CAS  Google Scholar 

  • Larsson S, Hotchkiss G, Andäng M, Nyhohn T, Inzunza J, Jansson I, Ährlund-Richter L (1994) Reduced β2-microglobulin mRNA levels in transgenic mice expressing a designed hammerhead ribozyme. Nucl Acids Res 22: 2242–2248

    Article  PubMed  CAS  Google Scholar 

  • Lieber A, Strauss M (1995) Selection of efficient cleavage sites in target RNAs by using a ribozyme expression library. Mol Cell Biol 15: 540–551

    PubMed  CAS  Google Scholar 

  • Limauro S, Benseler F, Mclaughlin LW (1994) 1-Methylguanosine substitutions of the conserved guanosine residues inactivate the hammerhead ribozyme. Bioorg Med Chem Lett 4:2189–2192

    Article  CAS  Google Scholar 

  • Longfellow CE, Kierzek R, Turner DH (1990) Thermodynamic and spectroscopic study of bulge loops in oligoribonucleotides. Biochemistry 29: 278–285

    Article  PubMed  CAS  Google Scholar 

  • Marschall P, Thomson JB, Eckstein F (1994) Inhibition of gene expression with ribozymes. Cell Mol Neurobiol 14: 523–538

    Article  PubMed  CAS  Google Scholar 

  • Miller WA, Hercus T, Waterhouse PM, Gerlach WL (1991) A satellite RNA of barley yellow dwarf virus contains a novel hammerhead structure in the self-cleaving domain. Virology 183: 711–720

    Article  PubMed  CAS  Google Scholar 

  • Müller G, Strack B, Dannull J, Sproat BS, Surovoy A, Jung G, Moelling K (1994) Amino acid requirements of the nucleocapsid protein of HIV-1 for increasing catalytic activity of a Ki-ras ribozyme in vitro. J Mol Biol 242: 422–429

    Article  PubMed  Google Scholar 

  • Mulligan RC (1993) The basic science of gene therapy. Science 260: 926–930

    Article  PubMed  CAS  Google Scholar 

  • Nakamaye KL, Eckstein F (1994) AUA-Cleaving hammerhead ribozymes: attempted selection for improved cleavage. Biochemistry 33: 1271–1277

    Article  PubMed  CAS  Google Scholar 

  • Nelson JW, Tinoco Jr (1982) Comparison of the kinetics of ribooligonucleotide, deoxyribooligonucleotide, and hybrid oligonucleotide double-strand formation by temperature-jump kinetics. Biochemistry 21: 5289–5295

    Article  PubMed  CAS  Google Scholar 

  • Ng MMP, Benseler F, Tuschl T, Eckstein F (1994) Isoguanosine substitution of con- served adenosines in the hammerhead ribozyme. Biochemistry 33: 12119–12126

    Article  PubMed  CAS  Google Scholar 

  • Odai O, Kodama H, Hiroaki H, Sakata T, Tanaka T, Uesugi S (1990) Synthesis and NMR study of ribooligonucleotides forming a hammerhead-type RNA enzyme system. Nucl Acids Res 18: 5955–5959

    Article  PubMed  CAS  Google Scholar 

  • Paolella G, Sproat B, Lamond AI (1992) Nuclease-resistant ribozymes with high catalytic activity. EMBO J 11: 1913–1919

    PubMed  CAS  Google Scholar 

  • Pardi A (1994) Ribozyme revealed. Nat Struct Biol 1: 846–849

    Article  PubMed  CAS  Google Scholar 

  • Pease AC, Wemmer DE (1990) Characterization of the secondary structure and melting of a self-cleaved RNA hammerhead domain by 1H NMR spectroscopy. Biochemistry 29: 9039–9046

    Article  PubMed  CAS  Google Scholar 

  • Perreault J-P, Wu T, Cousineau B, Ogilvie KK, Cedergren R (1990) Mixed deoxyriboand ribooligonucleotides with catalytic activity. Nature 344: 565–567

    Article  PubMed  CAS  Google Scholar 

  • Perriman R, Delves A, Gerlach WL (1992) Extended target-site specificity for a hammerhead ribozyme. Gene 113: 157–163

    Article  PubMed  CAS  Google Scholar 

  • Perriman R, Breuning G, Dennis ES, Peacock WJ (1995) Effective ribozyme delivery in plant cells. Proc Natl Acad Sci USA 92: 6175–6179

    Article  PubMed  CAS  Google Scholar 

  • Pieken WA, Olsen DB, Benseler F, Aurup H, Eckstein F (1991) Kinetic characterization of ribonuclease-resistant 2’-modified hammerhead ribozymes. Science 253: 314–317

    Article  PubMed  CAS  Google Scholar 

  • Pley HW, Flaherty KM, McKay DB (1994) Three-dimensional structure of a hammerhead ribozyme. Nature 372: 68–74

    Article  PubMed  CAS  Google Scholar 

  • Pörschke D, Eigen M (1971) Co-operative non-enzymatic base recognition. J Mol Biol 62: 361–381

    Article  PubMed  Google Scholar 

  • Pörschke D, Uhlenbeck OC, Martin FH (1973) Thermodynamics and kinetics of the helix-coil transition of oligomers containing GC base pairs. Biopolymers 12: 1313–1335

    Article  Google Scholar 

  • Ravetch J, Gralla J, Crothers DM (1974) Thermodynamic and kinetic properties of short RNA helices: the oligomer sequence AnGCUn Nucl Acids Res 1: 109–127

    Article  PubMed  CAS  Google Scholar 

  • Ruffner DE, Dahm SC, Uhlenbeck OC (1989) Studies on the hammerhead RNA self-cleaving domain. Gene 82: 31–41

    Article  PubMed  CAS  Google Scholar 

  • Ruffner DE, Stormo GD, Uhlenbeck OC (1990) Sequence requirements of the hammerhead RNA self-cleavage reaction. Biochemistry 29: 10695–10702

    Article  PubMed  CAS  Google Scholar 

  • Saenger W, Suck D, Eckstein F (1974) On the mechanism of RNase A. Eur J Biochem 46: 559–567

    Article  PubMed  CAS  Google Scholar 

  • SantaLucia J, Jr, Turner DH (1993) Structure of (rGGCGAGCC)2 in solution from NMR and restrained molecular dynamics. Biochemistry 32: 12612–12623

    Article  PubMed  CAS  Google Scholar 

  • SantaLucia J Jr, Kierzek R, Turner DH (1990) Effects of GA mismatches on the structure and thermodynamics of RNA internal loops. Biochemistry 29: 8813–8819

    Article  PubMed  CAS  Google Scholar 

  • SantaLucia J Jr, Kierzek R, Turner DH (1991) Functional group substitutions as probes of hydrogen bonding between GA mismatches in RNA internal loops. J Am Chem Soc 113: 4313–4322

    Article  CAS  Google Scholar 

  • SantaLucia J Jr, Kierzek R, Turner DH (1992) Context dependence of hydrogen bond free energy revealed by substitutions in an RNA hairpin. Science 256: 217–219

    Article  PubMed  CAS  Google Scholar 

  • Sawata S, Komiyama M, Taira K (1995) Kinetic evidence based on solvent isotope effects for the nonexistence of a proton-transfer process in reactions catalyzed by a hammerhead ribozyme: implication to the double-metal-ion mechanism of catalysis. J Am Chem Soc 117: 2357–2358

    Article  CAS  Google Scholar 

  • Scott WG, Finch JT, Klug A (1995) The crystal structure of an all RNA hammerhead ribozyme: a proposed mechanism for RNA catalytic cleavage. Cell 81: 991–1002

    Article  PubMed  CAS  Google Scholar 

  • Sczakiel G (1995) The 3-dimensional structure of hammerhead ribozymes. Angew Chem Int Ed Engl 34: 643–645

    Article  CAS  Google Scholar 

  • Shimayama T, Nishikawa S, Taira K (1995) Generality of the NUX rule–kinetic analysis of the results of systematic mutations in the trinucleotide at the cleavage site of hammerhead ribozymes. Biochemistry 34: 3649–3654

    Article  PubMed  CAS  Google Scholar 

  • Sigurdsson ST, Tuschl T, Eckstein F (1995) Probing RNA tertiary structure: interhelical cross-linking of the hammerhead ribozyme. RNA 1: 575–583

    PubMed  CAS  Google Scholar 

  • Sioud M, Natvig JB, Forre O (1992) Preformed ribozyme destroys tumour necrosis factor mRNA in human cells. J Mol Biol 223: 831–835

    Article  PubMed  CAS  Google Scholar 

  • Slim G, Gait MJ (1991) Configurationally defined phosphorothioate-containing oligoribonucleotides in the study of the mechanism of cleavage of hammerhead ribozymes. Nucl Acids Res 19: 1183–1188

    Article  PubMed  CAS  Google Scholar 

  • Sullivan SM (1994) Development of ribozymes for gene therapy. J Invest Dermatol 103: 85S - 89S

    Article  PubMed  CAS  Google Scholar 

  • Sun LQ, Warrilow D, Wang L, Witherington C, Macpherson J, Symonds G (1994) Ribozyme-mediated suppression of Moloney murine leukemia virus and humanimmunodeficiency-virus type I replication in permissive cell lines. Proc Natl Acad Sci USA 91: 9715–9719

    Article  PubMed  CAS  Google Scholar 

  • Symons RH (1992) Small catalytic RNAs. Annu Rev Biochem 61: 641–671

    Article  PubMed  CAS  Google Scholar 

  • Thierry AR, Takle GB (1995) Liposomes as a delivery system for antisense and ribozyme compounds. In: Akhtar S (ed) Delivery strategies for antisense oligonucleotide therapeutics. CRC Press, Boca Raton, p 199

    Google Scholar 

  • Thompson J, Ayers DF, Malmstrom TA, McKenzie TL, Ganousis L, Chowrira BM, Couture L, Stinchcomb DT (1995a) Improved accumulation and activity of ribozymes expressed from a tRNA-based RNA polymerase III promoter. Nucl Acids Res 23: 2259–2268

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Macejak D, Couture L, Stinchcomb DT (1995b) Ribozymes in gene therapy. Nat Med 1: 277–278

    Article  PubMed  CAS  Google Scholar 

  • Thomson JB, Tuschl T, Eckstein F (1993) Activity of hammerhead ribozyme containing non-nucleotidic linkers. Nucl Acids Res 21: 5600–5603

    Article  PubMed  CAS  Google Scholar 

  • Tsuchihashi Z, Khosla M, Herschlag D (1993) Protein enhancement of hammerhead ribozyme catalysis. Science 262: 99–102

    Article  PubMed  CAS  Google Scholar 

  • Tuschl T, Eckstein F (1993) Hammerhead ribozymes: Importance of stem-loop II for activity. Proc Natl Acad Sci USA 90: 6991–6994

    Article  PubMed  CAS  Google Scholar 

  • Tuschl T, Ng MMP, Pieken W, Benseler F, Eckstein F (1993) Importance of exocyclic base functional groups of central core guanosines for hammerhead ribozyme activity. Biochemistry 32: 11658–11668

    Article  PubMed  CAS  Google Scholar 

  • Tuschl T, Gohlke C, Jovin TM, Westhof E, Eckstein F (1994) A three-dimensional model for the hammerhead ribozyme based on fluorescence measurements. Science 266: 785–788

    Article  PubMed  CAS  Google Scholar 

  • Tuschl T, Thomson JB, Eckstein F (1995) RNA cleavage by small catalytic RNAs. Curr Opin Struct Biol 5: 296–302

    Article  PubMed  CAS  Google Scholar 

  • Uhlenbeck OC (1987) A small catalytic oligoribonucleotide. Nature 328: 596–600

    Article  PubMed  CAS  Google Scholar 

  • Usher DA, Erenrich ES, Eckstein F (1972) Geometry of the first step in the action of ribonuclease A. Proc Natl Acad Sci USA 69: 115–118

    Article  PubMed  CAS  Google Scholar 

  • Van Tol H, Buzayan JM, Feldstein PA, Eckstein F, Bruening G (1990) Two autolytic processing reactions of a satellite RNA proceed with inversion of configuration. Nucl Acids Res 18: 1971–1975

    Article  PubMed  Google Scholar 

  • Werner M, Uhlenbeck OC (1995) The effect of base mismatches in the substrate recognition helices of hammerhead ribozymes on binding and catalysis. Nucl Acids Res 23: 2092–2096

    Article  PubMed  CAS  Google Scholar 

  • Wu M, McDavell JA, Turner DH (1995) A periodic table of symmetric tandem mismatches in RNA. Biochemistry 34: 3204–3211

    Article  PubMed  CAS  Google Scholar 

  • Zhao JJG, Pick L (1993) Generating loss-of-function phenotypes of the fushi tarazu gene with a targeted ribozyme in Drosophila. Nature 365: 448–451

    Article  PubMed  CAS  Google Scholar 

  • Zoumadakis M, Tabler M (1995) Comparative analysis of cleavage rates after systematic permutation of the NUX consensus target motif for hammerhead ribozymes. Nucl Acids Res 23: 1192–1196

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Thomson, J.B., Tuschl, T., Eckstein, F. (1996). The Hammerhead Ribozyme. In: Eckstein, F., Lilley, D.M.J. (eds) Catalytic RNA. Nucleic Acids and Molecular Biology, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61202-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61202-2_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-62679-4

  • Online ISBN: 978-3-642-61202-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics