Skip to main content

Density Functional Theory Study of Self-Diffusion on the (111) Surfaces of Ni, Pd, Pt, Cu, Ag and Au

  • Conference paper

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 121))

Abstract

The energy barriers for self-diffusion on the (111) surfaces of Ni, Pd, Pt, Cu, Ag, and Au are calculated using density functional theory. Also the effect of strain on the diffusion barriers is studied. Energy barriers calculated within the effective-medium theory are found to agree reasonably with the first principles calculations for the three noble metals. Including non-local corrections to the local density approximation for exchange and correlation is found to lower energy barriers by typically 0.04 eV.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Bauer, Appl. Surf. Sci. 11/12, 479 (1982).

    Google Scholar 

  2. J. A. Venables, G. D. T. Spiller, and M. Hanbücken, Rep. Prog. Phys. 47, 399 (1984).

    Article  ADS  Google Scholar 

  3. R. Q. Hwang, J. Schröder, C. Günter, and R. J. Behm, Phys. Rev. Lett. 67, 3279 (1991).

    Article  ADS  Google Scholar 

  4. T. Michely, M. Hohage, M. Bott, and G. Comsa, Phys. Rev. Lett. 70, 3943 (1993).

    Article  ADS  Google Scholar 

  5. E. Hahn et al., Surf. Sci. 319, 277 (1994).

    Article  ADS  Google Scholar 

  6. H. Brune, H. Röder, C. Boragno, and K. Kern, Phys. Rev. Lett. 73, 1955 (1994).

    Article  ADS  Google Scholar 

  7. S. Günther et al., Phys. Rev. Lett. 73, 553 (1994).

    Article  ADS  Google Scholar 

  8. H. Brune et al., Phys. Rev. B 52, R14380 (1995).

    Article  ADS  Google Scholar 

  9. L. P. Nielsen et al., Phys. Rev. Lett. 71, 754 (1993).

    Article  ADS  Google Scholar 

  10. L. P. Nielsen et al., Phys. Rev. Lett. 74, 1159 (1995).

    Article  ADS  Google Scholar 

  11. G. L. Kellogg, Surf. Sci. Rep. 21, 1 (1994).

    Article  ADS  Google Scholar 

  12. T. Tung and W. R. Graham, Surf. Sci. 97, 73 (1980).

    Article  ADS  Google Scholar 

  13. P. J. Feibelman, J. S. Nelson, and G. L. Kellogg, Phys. Rev. B 49, 10548 (1994).

    Article  ADS  Google Scholar 

  14. S. C. Wang and G. Ehrlich, Phys. Rev. Lett. 68, 1160 (1992).

    Article  ADS  Google Scholar 

  15. G. W. Jones, J. M. Marcano, J. K. Nørskov, and J. A. Venables, Phys. Rev. Lett. 65, 3317 (1990).

    Article  ADS  Google Scholar 

  16. K. W. Jacobsen, J. K. Nørskov, and M. J. Puska, Phys. Rev. B 35, 7423 (1987).

    Article  ADS  Google Scholar 

  17. P. Stoltze, J. Phys. Condensed Matter 6, 9495 (1994).

    Article  ADS  Google Scholar 

  18. K. W. Jacobsen, P. Stoltze, and J. K. Nørskov, to be published.

    Google Scholar 

  19. M. S. Daw and M. I. Baskes, Phys. Rev. Lett. 50, 1285 (1983).

    Article  ADS  Google Scholar 

  20. S. M. Foiles, M. I. Baskes, and M. S. Daw, Phys. Rev. B 33, 7983 (1986).

    Article  ADS  Google Scholar 

  21. G. Boisvert and L. J. Lewis, in Mechanisms of Thin-Film Evolution, Vol. 317 of MRS Symposia Proceedings, edited by S. M. Yalisove, C. V. Thomson, and D. J. Eaglesham (Materials Research Society, Pittsburgh, 1994), p. 71.

    Google Scholar 

  22. P. Blandin and C. Massobrio, Surf. Sci. 279, L219 (1992).

    Article  Google Scholar 

  23. D. E. Sanders and A. E. DePristo, Surf. Sci. Lett. 264, L169 (1992).

    Article  Google Scholar 

  24. M. Villarba and H. Jönsson, Surf. Sci. 317, 15 (1994).

    Article  ADS  Google Scholar 

  25. J. Jacobsen, K. W. Jacobsen, P. Stoltze, and J. K. Nørskov, Phys. Rev. Lett. 74, 2295 (1995).

    Article  ADS  Google Scholar 

  26. S. Liu, Z. Zhang, G. Comsa, and H. Metiu, Phys. Rev. Lett. 71, 2967 (1993).

    Article  ADS  Google Scholar 

  27. R. Stumpf and M. Scheffler, Surf. Sci. 307-309, 501 (1994).

    Article  ADS  Google Scholar 

  28. R. Stumpf and M. Scheffler, Phys. Rev. Lett. 72, 254 (1994).

    Article  ADS  Google Scholar 

  29. G. Boisvert, L. J. Lewis, M. J. Puska, and R. M. Nieminen, Phys. Rev. B 92, 9078 (1995).

    Article  ADS  Google Scholar 

  30. J. P. Perdew et al, Phys. Rev. B 46, 6671 (1992).

    Article  ADS  Google Scholar 

  31. J. Neugebauer and M. Scheffler, Phys. Rev. B 46, 16067 (1992).

    Article  ADS  Google Scholar 

  32. M. C. Payne et al., Rev. Mod. Phys. 64, 1045 (1992).

    Article  ADS  Google Scholar 

  33. M. J. Gillian, J. Phys. 1, 689 (1989).

    Google Scholar 

  34. N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).

    Article  ADS  Google Scholar 

  35. D. J. Chadi and M. L. Cohen, Phys. Rev. B 8, 5747 (1973).

    Article  MathSciNet  ADS  Google Scholar 

  36. D. M. Ceperly and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).

    Article  ADS  Google Scholar 

  37. J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).

    Article  ADS  Google Scholar 

  38. X. J. Kong, C. T. Chan, K. M. Ho, and Y. Y. Ye, Phys. Rev. B 42, 9357 (1990).

    Article  ADS  Google Scholar 

  39. B. Hammer, K. W. Jacobsen, and J. K. Nørskov, Phys. Rev. Lett. 70, 3971 (1993).

    Article  ADS  Google Scholar 

  40. M. W. Finnis and J. E. Sinclair, Philos. Mag. A 50, 45 (1984).

    Article  ADS  Google Scholar 

  41. A. P. Sutton and J. Chen, Philos. Mag Lett. 61, 139 (1990).

    Article  ADS  Google Scholar 

  42. S. B. Sinnot, M. S. Stave, T. J. Reaker, and A. E. DePristo, Phys. Rev. B 44, 8927 (1991).

    Article  ADS  Google Scholar 

  43. F. Ercolessi, E. Tosatti, and M. Parinello, Phys. Rev. Lett. 57, 719 (1986).

    Article  ADS  Google Scholar 

  44. M. Bott et al., to be published.

    Google Scholar 

  45. C. L. Liu, J. M. Cohen, J. B. Adams, and A. F. Voter, Surf. Sci. 253, 334 (1991).

    Article  ADS  Google Scholar 

  46. K. Stokbro and K. W. Jacobsen, Phys. Rev. B 47, 4916 (1993).

    Article  ADS  Google Scholar 

  47. O. K. Andersen, O. Jepsen, and D. Glötzel, in Highlights of Condensed Matter Theory, Corso Soc. Italiana di Fisica, edited by F. Bassani, F. Fumi, and M. P. Tosi (North-Holland, New York, 1985), Vol. LXXXIX, pp. 59–176.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mortensen, J.J., Hammer, B., Nielsen, O.H., Jacobsen, K.W., Nørskov, J.K. (1996). Density Functional Theory Study of Self-Diffusion on the (111) Surfaces of Ni, Pd, Pt, Cu, Ag and Au. In: Okiji, A., Kasai, H., Makoshi, K. (eds) Elementary Processes in Excitations and Reactions on Solid Surfaces. Springer Series in Solid-State Sciences, vol 121. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61185-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61185-8_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64738-3

  • Online ISBN: 978-3-642-61185-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics