Skip to main content

Coastal Antarctica: Atmospheric Chemical Composition and Atmospheric Transport

  • Conference paper
Chemical Exchange Between the Atmosphere and Polar Snow

Part of the book series: NATO ASI Series ((ASII,volume 43))

Abstract

Snow fields of the coastal Antarctic region are situated intermediately between the vast environmental regimes of the high antarctic plateau and that of the South Polar Ocean. Since they are directly exposed to moist maritime air masses, a relatively high snow accumulation rate, associated with the deposition of mainly marine derived aerosol species, is expected here. These characteristics make this region unique to recover high resolution ice core records that reveal the environmental and climatic history of the South Polar Ocean. Indeed, several extensive ice core studies have been or are currently performed in coastal antarctic regions (see Figure 1). To “calibrate”, in particular, their glacio-chemical information in terms of the corresponding atmospheric changes, representative long term records of the coastal antarctic aerosol chemistry (including the relevant precursor gases) are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams F, Van Graen M, Van Espen P and Andreuzzi D (1980) The elemental composition atmospheric aerosol particles at Chacaltaya, Bolivia, Atmos Env 14: 879–893.

    Article  Google Scholar 

  • Aristarain AS, Delmas RJ and Briat M (1982) Snow chemistry on James Ross Island(Antarctic Peninsula), J Geophys Res 87: 11004–11012.

    Article  Google Scholar 

  • Ayers GP, Ivey JP and Gillett RW (1991) Coherence between seasonal cycles of dimethyl sulphide, methanesulphonate and sulphate in marine air, Nature 239: 404–406.

    Article  Google Scholar 

  • Bates TS, Calhoun JA and Quinn PK (1992) Variations in the methansulfonate to sulfate molar ratio in submicrometer marin aerosol particles over the South Pacific Ocean, J Geophys Res: 9859–9865.

    Google Scholar 

  • Berresheim H (1987) Biogenic sulfur emissions from Antarctic waters, J Geophys Res 92: 13245–13262.

    Article  Google Scholar 

  • Bigg EK, Gras JL and Evans C (1984) Origin of Aitken particles in remote regions of the southern hemisphere, J Atmos Chem 1: 203–214.

    Article  Google Scholar 

  • Calhoun JA, Bates TS and Charlson RJ (1991) Sulfur isotope measurements of submicrometer sulfate aerosol particles over the Pacific Ocean, Geophys Res Lett 18: 1877–1880.

    Article  Google Scholar 

  • Clausen HB and Langway CC Jr (1989) The ionic deposits in polar ice cores, Dahlem Konferenzen: The Environmental Record in Glaciers and Ice Sheets, edited byOeschger H and Langway CC Jr, pp 225–247, John Wiley, New York.

    Google Scholar 

  • CSIRO (1989–1991) Baseline Series, Ann. Rep. Baseline Atmospheric Program (Australia) Burea of Meteorology, Melbourne 3000, Australia.

    Google Scholar 

  • Dick AL and Peel DA (1985) Trace elements in Antarctic air and snowfall. Ann. Glaciol. 7: 12–19.

    Google Scholar 

  • Etheridge DM, Pearman GI and Fraser PJ (1992) Changes in tropospheric methane between 1841 and 1978 from a high accumulation-rate Antarctic ice core, Tellus 42B: 282–294.

    Google Scholar 

  • Feely HW, Larsen RJ and Sanderson CG (1988) Annual report of the surface air sampling program, EML 497.

    Google Scholar 

  • Freyer HD, Kobel K, Delmas RJ, Kley D and Legrand MR (1995) First results of 15N/14N ratios in nitrate from alpine and polar ice cores (submitted).

    Google Scholar 

  • Genthon C (1992) Simulations of desert dust and sea-salt aerosols in Antactica with a general circulation model of the atmosphere, Tellus 44B: 371–389.

    Google Scholar 

  • Gillett RW, Ayers GP, Ivey JP and Gras JL (1993) Measurement of dimethylsulfide, sulfurdioxide, methanesulfonic acid and non sea salt sulfate at the Cape Grim baseline station in Restelli G and Angeletti G (eds) DMS: ocean atmosphere and climate: 117–128.

    Google Scholar 

  • Giovinetto MB and Waters NM (1990) Dependence of Antarctic surface mass balance on temperature, elevation, and distance to open ocean, J Geophys Res 95: 3517–3531.

    Article  Google Scholar 

  • Gjessing Y (1989) Excess and deficit of sulfate in polar snow, Atmos Env 23: 155–160.

    Article  Google Scholar 

  • Graf W, Moser H, Reinwarth O, Kipfstuhl J, Oerter H, Minikin A and Wagenbach D (1993) Snow accumulation rates and isotopie contents (2H, 3H, 180) of near surface firn of the Filchner-Ronne Ice Sheh; Antarctica. Annals of Glaciology, 1994: 121–128.

    Google Scholar 

  • Gras JL (1993) Condensation nucleus size distribution at Mawson, Antarctica: microphysics and chemistry, Atmos Env 27A: 1427–1434.

    Google Scholar 

  • Herron MM and Langway CC Jr (1979) Dating of Ross Ice Shelf cores by chemical analysis, J Glaciology 24: 345–356.

    Google Scholar 

  • International Atome Energy Agency (IAEA), Environmental isotope data No 8 (1986) and 9 (1990) Technical Reports Series 264 and 311 and personal communication by K. Rozanski.

    Google Scholar 

  • Jouzel J, Merlivat L, Mazaudier D, Pourchet M and Lorius C (1982) Natural tritium deposition over Antarctica and estimation of the mean global production rate, Geophys Res Lett Vol 9: 1191–1194.

    Article  Google Scholar 

  • Jouzel J, Merlivat L, Pourchet M and Lorius C (1979) A continuous record of artificial tritium fallout at the South Pole, Earth Planet Sci Lett 45: 188–200.

    Article  Google Scholar 

  • Keck L (1994) Experimentelle Simulation einer möglichen Sulfatabreicherung in polaren Seesalzaerosolen, MS-Thesis, Institut für Umweltphysik, Univerversity Heidelberg.

    Google Scholar 

  • Laird CM, Zeller EJ, Armstrong TP and Parker BC (1982) Solar activity and nitrate deposition in South Pole snow, Geophys Res Lett 9: 1195–1198.

    Article  Google Scholar 

  • Laird CM, Zeller E J and Dreschhoff GAM (1988) Comment on “Relative contributions of tropospheric and stratospheric sources to nitrate in Antarctic snow” by M. R. Legrand and R. J. Delmas, Tellus 40B: 233–236.

    Article  Google Scholar 

  • Lambert G, Ardouin B and Sanak J (1990) Atmospheric transport of trace elements toward Antarctica, Tellus 42B: 76–83.

    Google Scholar 

  • Larsen RJ and Sanderson CG (1990) Annual report of the surface air sampling program, EML 524: 1–34.

    Google Scholar 

  • Legrand MR, Fenient-Saigne C, Saltzman ES and Germain C (1992) Spatial and temporal variations of methanesulfonic acid and non sea salt sulfate in Antarctic ice, J Atmos Chem 14: 245–260.

    Article  Google Scholar 

  • Legrand MR and Delmas RJ (1986) Relative contributions of tropospheric and stratospheric sources to nitrate in Antarctic snow, Tellus 38B: 236–249.

    Article  Google Scholar 

  • Legrand MR and Delmas RJ (1988) Reply to C. M. Laird, E.J. Zeller and G. A. M. Dreschhofi; Tellus 40B: 237–240.

    Article  Google Scholar 

  • Legrand MR and Kirchner S (1990) Origins and variations of nitrate in South Polar precipitation, J Geophys Res 95: 3493–3507.

    Article  Google Scholar 

  • Levin I and Hesshaimer V (1995) Refining of atmospheric transport model entries by the globally observed passiv tracer distribution of 85Krypton sulphur hexafluoride (SF6). To be submitted to J. Geophys. Res.

    Google Scholar 

  • Levy n H, Mahlman JD and Moxim WJ (1980) A stratospheric source of reactive nitrogen in the unpolluted troposphere, Geophys Res Lett 7: 441–444.

    Article  Google Scholar 

  • Maenhaut W and Zoller WH (1979) Determination of the chemical composition of the South Pole aerosol by instrumental neutron activation analysis, J Radioanal Chem 37: 637–650.

    Article  Google Scholar 

  • Mayewski PA and Legrand MR (1990) Recent increase in nitrate concentration of Antarctic snow, Nature 346: 258–260.

    Article  Google Scholar 

  • McElroy MB (1989 Studies of Polar Ice: Insights for Atmospheric Chemistry, Dahlem Konferenzen: The Environmental Record in Glaciers and Ice Sheets, John Wiley, New York. 363–211.

    Google Scholar 

  • Minikin A, Wagenbach D, Graf W and Kipfstuhl J (1994) Spatial and seasonal of the snow chemistry at the central Filchner -Ronne Ice Sheh; Antarctica, Ann Glaciology.

    Google Scholar 

  • Moser K, Wagenbach D and Münnich KO (1990) Nitrate in coastal Antarctic shallow firn cores: comparison of seasonal pattern and total fluxes, Annal Glaciol 14: 349.

    Google Scholar 

  • Mosley-Thompson E, Dai J, Thompson LG, Grootes PM, Arbogast JK and Paskievitch JF (1991) Glaciological studies at Siple Station (Antarctica): potential ice-core paleoclimatic record, J Glaciol 37: 11–22.

    Google Scholar 

  • Mroz EJ, Alei M, Cappis JH, Guthals PR, Mason AS and Rokop DJ (1989) Antarctic atmospheric tracer experiments, J Geopys Res 94: 8577–8583.

    Article  Google Scholar 

  • Mulvaney R, Pasteur EC, Peel DA, Saltzman ES and Whung P-Y (1992) The ratio of MSA to non-sea-salt sulphate in Antarctic Peninsula ice cores, Tellus 44B: 295–303.

    Google Scholar 

  • Mulvaney R and Wolff EW (1993) Evidence for winter/spring denitrification of the stratosphere in the nitrate record of Antarctic firn cores, J Geophys Res 98: 5213–5220.

    Article  Google Scholar 

  • Mulvaney R and Wolff EW (1994) Spatial variability of the major chemistry of the Antarctic ice sheet, Annals of Glaciology, 1994: 440–447.

    Article  Google Scholar 

  • Neubauer J and Heumann KG (1988) Nitrate trace determination in snow and firn core samples of ice shelves at the Weddell Sea, Antarctica, Atmos Env 22: 537–545.

    Google Scholar 

  • Oeschger H and Langway Jr CC (eds) (1989) Dahlem Konferenzen: The Environmental.

    Google Scholar 

  • Record in Glaciers and Ice Sheets, John Wiley, New York.

    Google Scholar 

  • Parish TR (1988) Surface winds over the Antarctic continent: A review, Rev Geophys 26: 169–180.

    Article  Google Scholar 

  • Peel DA and Mulvaney R (1992) Time-trends in the pattern of ocean-atmosphere exchange in an ice core from the Weddell Sea sector of Antarctica, Tellus 44B: 430–442.

    Google Scholar 

  • Petit JR, White JWC, Young NW, Jouzel J and Korotkevich YS (1991) Deuterium excess in recent Antarctic snow, J Geophys Res 96: 5113–5122.

    Article  Google Scholar 

  • Pfeilsticker K and Wagenbach D (1990) The seasonal cycle of nitrate in the Antartic troposphere, paper presented at Symposium on the Chemistry of the Global Atmosphere CACGP.

    Google Scholar 

  • Phillpot HR and Zillman JW (1970) The surface temperature over the Antarctic continent, J Geophys Res 75: 4161–4169.

    Article  Google Scholar 

  • Pichlmayer F. and Wagenbach D. (1995) An EA/MS method for source characterization of airborn nitrates, utilizing the stable isotope ratio of nitrogen, presented at 46th Pittsburg Conference, New Orleans, LA, March 5–10, 1995, Report OEFS-A-3369, pp 14, Austrian Research Center, Seibersdorf, Austria.

    Google Scholar 

  • Phillpot HR and Zillman JW (1970) The surface temperature over the Antarctic continent, J Geophys Res 75: 4161–4169.

    Article  Google Scholar 

  • Polian G, Lambert G, Ardouin B and Jegou A (1986) Long-range transport of continental radon in Subantarctic and Antarctic areas, Tellus 38B: 178–189.

    Article  Google Scholar 

  • Prospero JM, Savoie DL, Saltzman ES and Larsen R (1991) Impact of oceanic sources of biogenic sulphur on sulphate aerosol concentrations at Mawson, Antarctica, Nature 350: 221–223.

    Google Scholar 

  • Prospero JM and Savoie DL (1989) Effect of continental sources on nitrate concentrations over the Pacific Ocean, Nature 339: 687–689.

    Article  Google Scholar 

  • Pszenny AA, Castelle AJ, Galluway JN and Duce RA (1989) A study of the sulfur cycle in the Antartic marine boundary layer, J Geophys Res 94: 9818–9380.

    Article  Google Scholar 

  • Quinn PK, Charlson RJ and Zoller WH (1987) Ammonia, the dominant base in the remote marine troposphere: a review, Tellus 39B: 413–425.

    Article  Google Scholar 

  • Rehfeld S and Heimann (1994) Three-dimensional atmospheric transport simulation of the radioactive tracers 210Pb, 7Be, 10Be and 90Sr, Max-Planck-Institut für Meteorologie, Hamburg (FRG) Report Nol44.

    Google Scholar 

  • Robinson E, Clark D, Cronn DR, Bamesberger WL and Hogan AW (1983) Strato spheric- tropospheric ozone exchange in Antarctica caused by mountain waves, J Geophys Res 88: 10,708–10,720.

    Article  Google Scholar 

  • Saltzman ES, Savoie DC, Zika RG and Prospero JM (1983) Methansulfonic acid in the marine atmosphere, J Geophys Res 88: 10897–10902.

    Article  Google Scholar 

  • Saltzman ES, Savoie DC, Prospero JM and Zika RG (1984) Methansulfonic acid and non-seasalt sulfate in pacific air: regional and seasonal variations, J Atmos Chem 4: 227–240.

    Article  Google Scholar 

  • Saltzman ES (1994) Ocean/atmosphere cycling of dimethylsulfide: sensitivity to climate change, NATO ARW on GBCs in polar ice.

    Google Scholar 

  • Sanak J, Lambert G and Ardouin B (1985) Measurement of stratosphere-to-troposphere exchange in Antarctica by using short-lived cosmonuclides, Tellus 37B: 109–115.

    Article  Google Scholar 

  • Savoie DL, Prospero JM, Larsen RJ and Saltzman ES (1992) Nitrogen and sulfur species in aerosols at Mawson, Antarctica, and their relationship to natural radionuclides, J Atm Chem 14: 181–204.

    Google Scholar 

  • Schwerdtfeger W (1984) Weather and Climate of the Antarctic, Elsevier, New York, 261 pp.

    Google Scholar 

  • Shaw GE (1988) Antarctic aerosol: A review. Rev Geophys 26: 89–112.

    Article  Google Scholar 

  • Silvente E and Legrand M (1993) Ammonium to sulphate ratio in aerosol and snow of Greenland and Antarctic regions, Geophys Res Lett: 687–690.

    Google Scholar 

  • Solomon S (1988) The mystery of the Antarctic Ozone “Hole”, Rev Geophys 26: 131–148.

    Article  Google Scholar 

  • Teegarden BJ (1967) Cosmic-ray production of deuterium and tritium in the Earth’s atmosphere, J Geophys Res 72: 4863–4867.

    Article  Google Scholar 

  • Trefzer U (1992) Vergleich der ionischen Zusammensetzung von Aerosol- und Neuschneeproben aus dem Bereich der Georg-von-Neumayer Station, Antarktis. MS-Thesis, Institut für Umweltphysik, Umverversity Heidelberg.

    Google Scholar 

  • Tuncel G, Aras NK, Zoller WH (1989) Temporal variations and sources of elements in the South Pole atmosphere 1. Nonenriched and moderately enriched elements, J Geophys Res 94: 13025–13038.

    Article  Google Scholar 

  • Völkening J, Baumann H and Heumann KG (1988) Atmospheric distribution of particulate lead over the Atlantic Ocean from Europe to Antarctica, Atmos Environ 22: 1169–1174.

    Article  Google Scholar 

  • Wagenbach D, Münnich KO, Beer J and Wòlfii W (1988a) Time pattern of natural radionuclides in Antarctic aerosol and snow (Abstract), Chemical Geology 70:105.

    Article  Google Scholar 

  • Wagenbach D, Görlach U, Moser K and Münnich KO (1988b) Coastal Antarctic aerosol: the seasonal pattern of its chemical composition and radionuclide content, Tellus 40B: 426–436.

    Article  Google Scholar 

  • Wagenbach D, Graf W, Minikin A, Trerzer U, Kipfstuhl J, Oerter H and Blindow N (1994) Reconnaissance of chemical and isotopie firn properties on top of Berkner Island, Antarctica, Annals of Glaciology 20:307–312.

    Article  Google Scholar 

  • Winkler P, Brylka S and Wagenbach D (1992) Regular fluctuations of surface ozone at Georg- von-Neumayer station, Antarctica, Tellus 44B: 33–40.

    Google Scholar 

  • Wolff EW (1995) Nitrate in polar ice, NATO ASI Series, Vol I 30, Ice Core Studies of Global Biogeochemical Cycles, RJ Delmas (ed.): 91–119.

    Google Scholar 

  • Wolff EW and Suttie ED (1994) Antarctic snow record of southern hemisphere lead pollution, Geophys Res Lett 21: 781–784.

    Article  Google Scholar 

  • Zafiriou OC and True MB (1979) Nitrite Photolysis as a source of free radicals in productive surface waters, Geophys Res Lett 6: 81–84.

    Article  Google Scholar 

  • Zeller EJ, Dreschhoff GAM and Laird CM (1986) Nitrate flux on the Ross Ice Shelf, Antarctica and its relation to solar cosmic rays, Geophys Res Lett 13: 1264–1267.

    Google Scholar 

  • Zwally HJ (1984) Observing polar-ice variability, Ann of Glaciology 5: 191–198.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wagenbach, D. (1996). Coastal Antarctica: Atmospheric Chemical Composition and Atmospheric Transport. In: Wolff, E.W., Bales, R.C. (eds) Chemical Exchange Between the Atmosphere and Polar Snow. NATO ASI Series, vol 43. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61171-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61171-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64730-7

  • Online ISBN: 978-3-642-61171-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics