Skip to main content

Central Antarctica: Atmospheric Chemical Composition and Atmospheric Transport

  • Conference paper
Chemical Exchange Between the Atmosphere and Polar Snow

Part of the book series: NATO ASI Series ((ASII,volume 43))

Abstract

Central Antarctica, by virtue of its remoteness and the lack of local anthropogenic pollution sources, can probably be considered the cleanest location on earth. It is a true pristine background environment in the most fundamental sense. Indeed, it may be the last true pristine background environment. Yet, airborne materials of anthropogenic origin are detected there, albeit at very small concentrations, thanks to long-range transport and mixing processes in the atmosphere. The Antarctic troposphere plays an important role in global climate because it links the global atmosphere and oceans with the Antarctic ice sheet and stratosphere. Tropospheric transport processes occur on fairly short time scales, of the order of days to weeks; whereas stratospheric processes (e.g., interhemispheric exchange processes) may occur on the order of years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahlquist NC, Charlson RJ (1969) Measurement of the wavelength dependence of atmospheric extinction due to scatter. Atmos Environ 3: 551–564.

    Article  Google Scholar 

  • Barrie LA, Bodhaine BA, Schnell RC, Shaw GE (1991) Antarctic Tropospheric Chemistry Research, A Report of a Workshop Held in Conjunction with The International Symposium on the Tropospheric Chemistry of the Antarctic Region, 3–6 June 1991, Boulder, Colorado.

    Google Scholar 

  • Bigg EK (1980) Comparison of aerosol at four baseline atmospheric monitoring stations. J Appi Meteorol 19: 521–533.

    Article  Google Scholar 

  • Bigg EK, Gras JL, Evans C (1984) Origin of Aitken particles in remote regions of the southern hemisphere. J Atmos Chem 1: 203–214.

    Article  Google Scholar 

  • Bodhaine BA (1983) Aerosol measurements at four background sites. J Geophys Res 88: 10753–10768.

    Article  Google Scholar 

  • Bodhaine BA (1992) The U.S. aerosol monitoring program in Antarctica. In Conference Proceedings Vol 35, 4th Workshop Italian Research on Antarctic Atmosphere, Colacino M, Giovanelli G, Stefanutti L (eds) Italian Physical Society, Bologna: 15–25.

    Google Scholar 

  • Bodhaine BA (1995) Aerosol absorption measurements at Barrow, Mauna Loa, and South Pole. J Geophys Res, submitted.

    Google Scholar 

  • Bodhaine BA, Bortniak JC (1981) Four wavelength nephelometer measurements at South Pole. Geophys Res Lett 8: 539–542.

    Article  Google Scholar 

  • Bodhaine BA, Harris JM (1982) Geophysical Monitoring for Climatic Change No. 10, Summary Report 1981, Air Resources Laboratory, Boulder, Colorado: 158 pp.

    Google Scholar 

  • Bodhaine BA, Harris JM (1992) Aerosol measurements at the South Pole during 1987. NOAA Data Rep ERL CMDL-9, Climate Monitoring and Diagnostics Laboratory, Boulder, Colorado: 120 pp.

    Google Scholar 

  • Bodhaine BA, Murphy ME (1980) Calibration of an automatic condensation nuclei counter at the South Pole. J Aerosol Sci 11: 305–312.

    Article  Google Scholar 

  • Bodhaine BA, Shanahan MK (1990) Condensation nucleus and aerosol scattering extinction measurements at the South Pole Observatory. NOAA Data Rep ERL CMDL-1, Climate Monitoring and Diagnostics Laboratory, Boulder, Colorado: 148 pp.

    Google Scholar 

  • Bodhaine BA, DeLuisi JJ, Harris JM, Houmere P, Bauman S (1986) Aerosol measurements at the South Pole. Tellus 38B: 223–235.

    Article  Google Scholar 

  • Bodhaine BA, DeLuisi JJ, Harris JM, Houmere P, Bauman S (1987) PIXE analysis of South Pole aerosol. Nucl Instr Methods B22: 241–247.

    Google Scholar 

  • Bodhaine BA, Dutton EG, DeLuisi JJ, Harris JM, Shaw GE, Hansen ADA, Novakov T (1988) South Pole aerosol measurements during 1987. In Atmospheric Aerosols and Nucleation, Wagner PE, Vali G (eds) Springer-Verlag, Heidelberg.

    Google Scholar 

  • Bodhaine BA, Dutton EG, DeLuisi JJ, Herbert GA, Shaw GE, Hansen ADA (1989) Surface aerosol measurements at Barrow during AGASP-II. J Atmos Chem 9: 213–224.

    Article  Google Scholar 

  • Bodhaine BA, Barrie LA, Schnell RC, Shaw GE, McKie JK (1992) Symposium on the tropospheric chemistry of the Antarctic region. Tellus 44B: 250–251.

    Google Scholar 

  • Bouton K (1981) A reporter at large, South of 60 degrees south. New Yorker, 23 March 1981:42–122.

    Google Scholar 

  • Bromwich DH (1988) Snowfall in high southern latitudes. Rev Geophys 26: 149–168 ConwayTJ, Tans P, Waterman LS, Thoning KW, Masarie KA, Gammon RH (1988) Atmospheric carbon dioxide measurements in the remote global troposphere, 1981–1984. Tellus 40B: 81–115.

    Article  Google Scholar 

  • Conway TJ, Tans PP, Waterman LS, Thoning KW, Kitzis DR, Masarie KA, Zhang N (1994) Evidence for interannual variability of the carbon cycle from the National Oceanic and Atmospheric Administration/Climate Monitoring and Diagnostics Laboratory Global Air Sampling Network. J Geophys Res 99: 22831–22855.

    Article  Google Scholar 

  • Cunningham WC, Zoller WH (1981) The chemical composition of remote area aerosols. J Aerosol Sci 12: 367384.

    Article  Google Scholar 

  • Cunningham WC, Etz ES, Zoller WH (1979) Raman microprobe characterization of South Pole aerosol. Microbeam Analysis, Newbury D (ed) San Francisco Press, San Francisco, California, U.S.A.: 148–154.

    Google Scholar 

  • Dlugokencky EJ, Steele LP, Lang PM, Masarie KA (1994) The growth rate and distribution of atmospheric methane. J Geophys Res 99: 17021–17043.

    Article  Google Scholar 

  • Duce RA (1972) Trace substances in the Antarctic atmosphere. Proceedings of the Colloquiu on Conservation Problems of Antarctic and Circumpolar Waters, Parker B (ed) Allen Press, Lawrence, Kansas, U.S.A.: 27–42.

    Google Scholar 

  • Duce RA, Zoller WH, Jones AG (1971) Atmospheric particle and gas sampling at McMurdo and South Pole stations. Ant J United States 6: 133–134.

    Google Scholar 

  • Duce RA, Zoller WH, Moyers JL (1973) Particulate and gaseous halogens in the Antarctic atmosphere. J Geophys Res 78: 7802–7811.

    Article  Google Scholar 

  • Duce RA, Hoffman GL, Zoller WH (1975) Atmospheric trace metals at remote northern and southern hemisphere sites: Pollution or natural? Science 187: 59–61.

    Article  Google Scholar 

  • Dutton EG, Stone RS, Nelson DW, Mendonca BG (1991) Recent interannual variations in solar radiation, cloudiness, and surface temperature at the South Pole. J Climate 4: 848–858.

    Article  Google Scholar 

  • Elkins JW, Thompson TM, Swanson TH, Butler JH, Hall BD, Cummings SO, Fisher DA, Raffo AG (1993) Decrease in the growth rates of atmospheric chlorofluorocarbons 11 and 12. Nature 364: 780–783.

    Article  Google Scholar 

  • Genthon C (1992) Simulations of desert dust and sea-salt aerosols in Antarctica with a general circulation model of the atmosphere. Tellus 44B: 371–389.

    Google Scholar 

  • Gillette DA, Komhyr WH, Waterman LS, Steele LP, Gammon RH (1987) The NOAA/GMCC continuous C02 record at the South Pole, 1975–1982. J Geophys Res 92:4231–4240.

    Article  Google Scholar 

  • Hansen ADA, Bodhaine BA, Dutton EG, Schnell RC (1988) Aerosol black carbon measurements at the South Pole: Initial results, 1986–1987. Geophys Res Lett 15: 1193–1196.

    Article  Google Scholar 

  • Harris JM (1992) An analysis of 5-day midtropospheric flow patterns for the South Pole: 1985–1989. Tellus 44B: 409–421.

    Google Scholar 

  • Heintzenberg J (1985) What can we learn from aerosol measurements at baseline stations? J. Atmos Chem 3: 153–169.

    Article  Google Scholar 

  • Hofmann DJ (1988) Balloon-borne measurements of middle atmosphere aerosols and trace gases in Antarctica. Rev Geophys 26: 113–130.

    Article  Google Scholar 

  • Hogan AW (1975) Antarctic aerosols. J Appi Meteorol 14: 550–559.

    Article  Google Scholar 

  • Hogan AW (1979) Meteorological transport of particulate matter to the south polar plateau. JAppi Meteorol 18: 741–749.

    Article  Google Scholar 

  • Hogan AW, Barnard S (1978) Seasonal and frontal variation in Antarctic aerosol concentrations J Appi Meteorol 17: 1458–1465.

    Google Scholar 

  • Hogan AW, Barnard S (1979) Physical properties of the aerosol at the South Pole. Geophys Res Lett 6: 845–848.

    Article  Google Scholar 

  • Hogan AW, Bodhaine BA (1995) The twenty year aerosol record at South Pole. Paper presented at the 75th AMS Annual Meeting, Fourth Conference on Polar Meteorology, Dallas, Texas, USA, 15–20 January 1995.

    Google Scholar 

  • Hogan AW, Barnard S, Bortniak J (1979) Physical properties of the aerosol at the South Pole. Geophys Res Lett 6: 845–848.

    Article  Google Scholar 

  • Hogan A, Barnard S, Samson J, Winters W (1982) The transport of heat, water vapor and particulate material to the south polar plateau. J Geophys Res 87: 4287–4292.

    Article  Google Scholar 

  • Hogan A, Samson J, Kebschull K, Townsend R, Barnard S, Murphey B (1984a) On the interaction of aerosol with meteorology. J Rech Atmos 18: 41–67.

    Google Scholar 

  • Hogan A, Kebschull K, Townsend R, Murphey B, Samson J, Barnard S (1984b) Particle concentrations at the South Pole, on meteorological and climatological time scales; is the difference important? Geophys Res Lett 1: 850–853.

    Article  Google Scholar 

  • Hogan AW, Riley D, Murphey BB, Barnard SC, Samson JA (1993) Variation in aerosol concentration associated with a polar climatic iteration. In Antarctic Meteorology and Climatology: Studies based on automatic weather stations, Antarctic Research Series 61: 175–199.

    Article  Google Scholar 

  • Ito T (1985) Study of background aerosols in the Antarctic troposphere. J Atmos Chem 3: 69–91.

    Article  Google Scholar 

  • Ito T, Iwai K (1981) On the sudden increase in the concentration of Aitken particles in the Antarctic atmosphere. J Meteorol Soc Japan 59: 262–21.

    Google Scholar 

  • Ito T, Ono A, Iwai K (1984) On the origin and nature of Antarctic aerosols. In Proceedings of the Fourth Symposium on Polar Meteorology and Glaciology, National Institute of Polar Research, Tokyo, Japan: 289–296.

    Google Scholar 

  • Keeling CD, Adams JA, Ekdahl CA, Guenther PR (1976) Atmospheric carbon dioxide variations at the South Pole. Tellus 28: 552–564.

    Article  Google Scholar 

  • Keeling CD, Bacastow RB, Carter AF, Piper SC, Whorf TP, Heimann M, Mook WG, Roeloffzen H (1989) A three-dimensional model of atmospheric C02 transport based on observed winds, 1, Analysis of observational data. In Aspects of Climate Variability in the Pacific and the Western Americas, Geophys Monogr 55, Peterson DH (ed) American Geopysical Union, Washington, DC Komhyr WD (1983) An aerosol and gas sampling apparatus for remote observatory use. J Geosphys Res 88: 3913–3918.

    Google Scholar 

  • Law R, Simmonds I, Budd WF (1992) Application of an atmospheric tracer model to high southern latitudes. Tellus 44B: 358–370.

    Google Scholar 

  • Maenhaut W, Zoller WH (1977) Determination of the chemical composition of the South Pole aerosol by instrumental neutron activation analysis. J Radioanal Chem 37: 637–650.

    Article  Google Scholar 

  • Maenhaut W, Zoller WH, Duce RA, Hoffman GL (1979) Concentration and size distribution of particulate trace elements in the South Pole atmosphere. J Geophys Res 84: 2421–2431.

    Article  Google Scholar 

  • Meriwether JW Jr (1988) Atmospheric sciences in Antarctica. Rev Geophys 26: 41–43.

    Article  Google Scholar 

  • Metnieks AL, Pollak LW (1959) Instruction for use of photo-electric condensation nucleus counters. Geophys. Bull. No. 16, School of Cosmic Physics, Dublin Institute for Advanced Study, Dublin, Ireland.

    Google Scholar 

  • Miller JM (1974) In Geophysical Monitoring for Climatic Change No. 1, Summary Report 1972 Environmental Research Laboratories, Boulder, Colorado: 10.

    Google Scholar 

  • Mroz EJ, Alei M, Cappis JH, Guthals PR, Mason AS, Rokop DJ (1989) Antarctic atmospheric tracer experiments. J Geophys Res 94: 8577–8583.

    Article  Google Scholar 

  • Murcray FJ, Murcray FH, Murcray DG (1988) Infrared measurements of column abundances of several trace gases in the Antarctic atmosphere. Rev Geophys 26: 81–88.

    Article  Google Scholar 

  • Murphey BB, Hare T, Hogan AW, Lieser K, Toman J, Woodgates T (1991) Vernal atmospheric mixing in the Antarctic. J Appi Meteorol 30: 494–507.

    Article  Google Scholar 

  • Murphy ME, Bodhaine BA (1980) The South Pole automatic condensation nuclei counter: Instrument details and five years of observations. NOAA Tech Memo ERL ARL-82, Air Resources Laboratories, Silver Spring, Maryland, 88 pp.

    Google Scholar 

  • Oltmans SJ, Komhyr WD (1976) Surface ozone in Antarctica. J Geophys Res 81: 5359–5364.

    Article  Google Scholar 

  • Oltmans SJ, Levy H II (1994) Surface ozone measurements from a global network. Atmos Environ 28: 9–24.

    Article  Google Scholar 

  • Pack DH (1973) Geophysical monitoring for climatic change. Ant J United States 8: 253–254.

    Google Scholar 

  • Parish TR (1988) Surface winds over the Antarctic continent: A review. Rev Geophys 26: 169–180.

    Article  Google Scholar 

  • Parungo F, Ackerman E, Caldwell W, Weickmann HK (1979) Individual particle analysis of Antarctic aerosols. Tellus 31: 521–529.

    Article  Google Scholar 

  • Parungo F, Bodhaine B, Bortniak J (1981) Seasonal variation in Antarctic aerosol. J Aerosol Sci 12: 491–504.

    Article  Google Scholar 

  • Peterson JT, Rosson RM (1993) In Climate Monitoring and Diagnostics Laboratory No. 21, Summary Report 1992, NOAA Environmental Research Laboratories, Boulder, Colorado.

    Google Scholar 

  • Radok U (1979) Polar meteorology and climatology 1975–78. Rev Geophys Sp Phys 17: 1772–1781.

    Article  Google Scholar 

  • Raisbeck GM, Yiou F (1981) Cosmogenic 10Be/7Be as a probe of atmospheric transport processes. Geophys Res Lett 8: 1015–1018.

    Article  Google Scholar 

  • Rich TA (1955) A photo-electric nucleus counter with size discrimination. Geofis Pura Appi 31: 60–65.

    Article  Google Scholar 

  • Rich TA (1966) Apparatus and method for measuring the size of aerosols. J Rech Atmos 2: 79–86.

    Google Scholar 

  • Riley DC (1987) A study of the relationship between the variation of aerosol and meteorological parameters at South Pole on synoptic, seasonal and climatological time scales. Masters thesis submitted to the State University of New York, Albany, New York, 141 pp.

    Google Scholar 

  • Roberts CL Jr (1969) ESSA’s Antarctic meteorological program. Ant J United States 4: 224–225.

    Google Scholar 

  • Robinson E (1983) Polar meteorology and climatology 1979–1982. Rev Geophys Sp Phys 21: 1048–1064.

    Article  Google Scholar 

  • Robinson E, Bodhaine BA, Komhyr WD, Oltmans SJ, Steele LP, Tans P, Thompson TM (1988) Long-term air quality montioring at the South Pole by the NOAA program Geophysical Monitoring for Climatic Change. Rev Geophys 26: 63–80.

    Article  Google Scholar 

  • Samson JA, Barnard SC, Obremski JS, Riley DC, Black JJ, Hogan AW (1990) On the systematic variation in surface aerosol concentration at the South Pole. Atmos Res 25: 385–396.

    Article  Google Scholar 

  • Satchell M (1983) Women who conquer the South Pole. Parade Magazine, 5 June 1983: 16–17.

    Google Scholar 

  • Schnell RC, Liu SC, Oltmans SJ, Stone RS, Hofmann DJ, Dutton EG, Deshler T, Sturges WT, Harder JW, Sewell SD, Trainer M, Harris JM (1991) Decrease of summer tropospheric ozone concentrations in Antarctica. Nature 351: 726–729.

    Article  Google Scholar 

  • Schwerdtfeger W (1984) Weather and Climate of the Antarctic, Elsevier, New York, 261 pp.

    Google Scholar 

  • Shaw GE (1988) Antarctic aerosols: A review. Rev Geophys 26: 89–112.

    Article  Google Scholar 

  • Skala GF (1963) A new instrument for the continuous measurement of condensation nuclei. Anal Chem 35: 702–706.

    Article  Google Scholar 

  • Solomon S (1988) The mystery of the Antarctic Ozone “Hole”. Rev Geophys 26: 131–148.

    Article  Google Scholar 

  • Stearns CR, Wendler G (1988) Research results from Antarctic automatic weather stations. Rev Geophys 26: 45–61.

    Article  Google Scholar 

  • Steele LP, Fraser PJ, Rasmussen RA, Khalil MAK, Conway TJ, Crawford AJ, Gammon RH, Masarie KA, Thoning KW (1987) The global distribution of methane in the atmosphere. J Atmos Chem 5: 125–171.

    Article  Google Scholar 

  • Steele LP, Lang PM, Martin RC (1989) Atmospheric methane in Antarctica. Ant J United States 24: 239–241.

    Google Scholar 

  • Thieke JF, Charlson RJ, Winter JW, Ahlquist NC, Whitby KT, Husar RB, Liu BYH (1972) Multiwavelength nephelometer measurements in Los Angeles smog aerosols II. Correlation with size distributions, volume concentrations. J Colloid Inter Sci 39: 252–259.

    Article  Google Scholar 

  • Tuncel G, Aras NK, Zoller WH (1989) Temporal variations and sources of elements in the South Pole atmosphere 1. Nonenriched and moderately enriched elements. J Geophys Res 94 13025–13038.

    Article  Google Scholar 

  • Voskresensky AI (1968) Condensation nuclei in the Mirny region. Tr Sov Antarkt Eksped 38: 194–198.

    Google Scholar 

  • Warburton JA (1973) Surface measurments of Aitken nuclei at McMurdo, Siple, Byrd, and South Pole stations. Ant J United States 8: 236.

    Google Scholar 

  • Warren SG, Clarke AD (1990) Soot in the atmosphere and snow surface of Antarctica. J Geophys Res 95: 1811–1816.

    Article  Google Scholar 

  • Washburn AL (1980) Focus on polar research. Science 209: 643–652.

    Article  Google Scholar 

  • Weller G, Bentley CR, Elliot DH, Lanzerotti LJ, Webber PJ (1987) Laboratory Antarctica: Research contributions to global problems. Science 238: 1361–1368.

    Article  Google Scholar 

  • Yamazaki K, Chiba M (1993) A 3-D global simulation of the advective transport of passive tracers from various northern hemisphere sources. Tellus 45B: 160–178.

    Google Scholar 

  • Zoller WH, Gladney ES, Duce RA (1974) Atmospheric concentrations and sources of trace metals at the South Pole. Science 183: 198–200.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bodhaine, B.A. (1996). Central Antarctica: Atmospheric Chemical Composition and Atmospheric Transport. In: Wolff, E.W., Bales, R.C. (eds) Chemical Exchange Between the Atmosphere and Polar Snow. NATO ASI Series, vol 43. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61171-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61171-1_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64730-7

  • Online ISBN: 978-3-642-61171-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics