Skip to main content

Glucagon and Glucose Counterregulation

  • Chapter
Glucagon III

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 123))

Abstract

Glucose is the predominant metabolic fuel utilized by the brain (McCall 1993; Sokoloff 1989; Hasselbalch et al. 1994). Under physiological conditions glucose oxidation accounts for virtually all of the oxygen consumed by the brain, and the brain respiratory quotient approaches 1.0. The brain can utilize additional substrates, such as ketone bodies, but only when the circulating levels of these are elevated well above normal postabsorptive levels, as during prolonged fasting (Hasselbalch et al. 1994). Because the brain cannot synthesize glucose or store more than a few minutes’ supply as glycogen, it requires a continuous supply of glucose from the circulation for its survival and, therefore, for survival of the individual. At normal (or elevated) plasma glucose concentrations the rate of blood-to-brain glucose transport exceeds the rate of brain glucose metabolism. However, as the plasma glucose concentration falls below the physiological range blood-to-brain glucose transport becomes rate limiting to brain glucose metabolism. Given the survival value of maintenance of the plasma glucose concentration, it is not surprising that physiological mechanisms that very effectively prevent or correct hypoglycemia evolved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Berk MA, Clutter WE, Skor D, Shah SD, Gingerich RP, Parvin CA, Cryer PE (1985) Enhanced glycemic responsiveness to epinephrine in insulin dependent diabetes mellitus is the result of the inability to secrete insulin. J Clin Invest 75: 1842–1851

    Article  PubMed  CAS  Google Scholar 

  • Bloomgarden ZT, Liljenquist JE, Cherrington AD, Rabinowitz D (1978) Persistent stimulatory effect of glucagon on glucose production despite downregulation. J Clin Endocrinol Metab 47: 1152–1155

    Article  PubMed  CAS  Google Scholar 

  • Bolli GB, De Feo P, DeCosmo S, Perriello G, Ventura MM, Massi-Benedetti M, Santeusanio F, Gerich JE, Brunetti P (1984) A reliable and reproducible test for adequate glucose counterregulation in type 1 diabetes mellitus. Diabetes 33: 732–737

    Article  PubMed  CAS  Google Scholar 

  • Bolli G, DeFeo P, Perriello G, De Cosmo S, Ventura M, Campbell P, Brunetti P, Gerich JE (1985) Role of hepatic autoregulation in defense against hypoglycemia in humans. J Clin Invest 75: 1623–1631

    Article  PubMed  CAS  Google Scholar 

  • Boyle PJ, Cryer PE (1991) Growth hormone, cortisol, or both are involved in defense against, but are not critical to recovery from, prolonged hypoglycemia in humans. Am J Physiol 260: E395–E402

    PubMed  CAS  Google Scholar 

  • Boyle PJ, Liggett SB, Shah SD, Cryer PE (1988) Direct muscarinic cholinergic inhibition of hepatic glucose production in humans. J Clin Invest 82: 445–449

    Article  PubMed  CAS  Google Scholar 

  • Boyle PJ, Shah SD, Cryer PE (1989) Insulin, glucagon and catecholamines in the prevention of hypoglycemia during fasting in humans. Am J Physiol 256: E651–E661

    PubMed  CAS  Google Scholar 

  • Brodows RG, Ensinck JW, Campbell RG (1976) Mechanism of cyclic AMP response to hypoglycemia in man. Metabolism 25: 659–663

    Article  PubMed  CAS  Google Scholar 

  • Cherrington AD, Williams PE, Shulman GI, Lacy WW (1981) Differential time course of glucagon’s effect on glycogenolysis and gluconeogenesis in the conscious dog. Diabetes 30: 180–187

    Article  PubMed  CAS  Google Scholar 

  • Cherrington AD, Diamond MP, Green DR, Williams PE (1982) Evidence for an intrahepaic contribution to the waning effect of glucagon on glucose production in the conscious dog. Diabetes 31: 917–922

    Article  PubMed  CAS  Google Scholar 

  • Connolly CC, Adkins-Marshall BA, Neal DW, Pugh W, Jaspan JB, Cherringon AD (1992) Relationship between decrements in glucose level and metabolic response to hypoglycemia in absence of counterregulatory hormones in the conscious dog. Diabetes 41: 1308–1319

    Article  PubMed  CAS  Google Scholar 

  • Cryer PE (1993a) Glucose counterregulation: the physiological mechanisms that prevent or correct hypoglycemia. In: Frier BM, Fisher BM (eds) Hypoglycaemia and diabetes. Arnold, London, pp 34–55

    Google Scholar 

  • Cryer PE (1993b) Glucose counterregulation: the prevention and correction of hypoglycemia in humans. Am J Physiol 264: E149–55

    PubMed  CAS  Google Scholar 

  • Cryer PE (1993c) Catecholamines, pheochromocytoma and diabetes. Diabetes Rev 1: 309–317

    Google Scholar 

  • Cryer PE (1994) Hypoglycemia: the limiting factor in the management of IDDM. Diabetes 43: 1378–1389

    Article  PubMed  CAS  Google Scholar 

  • Cryer PE, Fisher JN, Shamoon H (1994) Hypoglycemia. Diabetes Care 17: 734–755

    PubMed  CAS  Google Scholar 

  • De Feo P, Perriello G, Torlone E, Ventura MM, Santeusanio F, Brunetti P, Gerich JE, Bolli GB (1989a) Demonstration of a role of growth hormone in glucose counterregulation. Am J Physiol 256: E835–E843

    PubMed  Google Scholar 

  • DeFeo P, Perriello G, Torlone E, Ventura MM, Fanelli C, Santeusanio F, Brunetti P, Gerich JE, Bolli GB (1989b) Contribution of cortisol to glucose counterregulation in humans. Am J Physiol 257: E35–E42

    CAS  Google Scholar 

  • Ensinck JW, Walter RM, Palmer JP, Brodows RG, CampbelL RG (1976) Glucagon responses to hypoglycemia in adrenalectomized man. Metabolism 25: 227–232

    Article  PubMed  CAS  Google Scholar 

  • Fanelli C, DeFeo P, Porcellatti F, Perriello G, Torlone E, Santeusanio F, Brunetti P, Bolli GB (1992) Adrenergic mechanisms contribute to the late phase of hypoglycemic glucose counterregulation by stimulating lipolysis. J Clin Invest 89: 2005–2013

    Article  PubMed  CAS  Google Scholar 

  • Fanelli C, Pampanelli S, Epifano L, Rambotti AM, Ciofetta M, Modarelli F, DiVincenzo A, Annibale B, Lepore M, Lalli C, Del Sindaco P, Brunetti P, Bolli GB (1994) Relative roles of insulin and hypoglycaemia on induction of neuroendocrine responses to, symptoms of and deterioration of cognitive function in hypoglycaemia in male and female humans. Diabetologia 37: 797–807

    Article  PubMed  CAS  Google Scholar 

  • Ferraninni E, DeFronzo RA, Sherwin RS (1982) Transient hepatic response to glucagon in man: role of insulin and hyperglycemia. Am J Physiol 242: E73 - E81

    Google Scholar 

  • Frier BM, Corrall RJM, Ratcliffe JG, Ashby JP, McClemont EJW (1991) Autonomic neural control mechanisms of substrate and hormonal responses to acute hypoglycaemia in man. Clin Endocrinol (Oxf) 14: 425–433

    Article  Google Scholar 

  • Frizzell RT, Campbell PJ, Cherrington AD (1988) Gluconeogenesis and hypoglycemia. Diabetes Metab Rev 4: 51–70

    Article  PubMed  CAS  Google Scholar 

  • Garber AJ, Cryer PE, Santiago JV, Haymond MW, Pagliara AS, Kipnis DM (1976) The role of adrenergic mechanisms in the substrate and hormonal response to insulin induced hypoglycemia in man. J Clin Invest 58: 7–15

    Article  PubMed  CAS  Google Scholar 

  • Gerich J, Davis J, Lorenzi M, Rizza R, Bohannon N, Karam J, Lewis S, Kaplan R, Schultz T, Cryer P (1979) Hormonal mechanisms of recovery from insulin-induced hypoglycemia in man. Am J Physiol 236: E380–E385

    PubMed  CAS  Google Scholar 

  • Hansen I, Firth R, Haymond M, Cryer P, Rizza R (1986) The role of autoregulation of hepatic glucose production in man: response to a physiologic decrement in plasma glucose. Diabetes 35: 186–191

    Article  PubMed  CAS  Google Scholar 

  • Hasselbalch SG, Knudsen GM, Jakobsen J, Hageman LP, Holm S, Paulson OB (1994) Brain metabolism during short-term starvation in humans. J Cereb Blood Flow Metab 14: 125–131

    Article  PubMed  CAS  Google Scholar 

  • Havel PJ, Taborsky GJ Jr (1994) The contribution of the autonomic nervous system to increased glucagon secretion during hypoglycemic stress: update 1994. In: Underwood LE (ed) The endocrine pancreas, insulin action and diabetes. The Endocrine Society, Bethesda, pp 201–204

    Google Scholar 

  • Heller SR, Cryer PE (1991) Hypoinsulinemia is not critical to glucose recovery from hypoglycemia in humans. Am J Physiol 261: E41–E48

    PubMed  CAS  Google Scholar 

  • Hilsted J, Frandsen H, Holst JJ, Christensen NJ, Nielsen SL (1991) Plasma glucagon and glucose recovery after hypoglycemia: the effect of total autonomic blockade. Acta Endocrinol (Copenh) 125: 466–469

    CAS  Google Scholar 

  • Hirsch IB, Marker JC, Smith LJ, Spina RJ, Parvin CA, Holloszy JO, Cryer PE (1991) Insulin and glucagon in the prevention of hypoglycemia during exercise in humans. Am J Physiol 260: E695–E704

    PubMed  CAS  Google Scholar 

  • Long RG, Albuquerque RH, Prata A, Barnes AJ, Adrian TE, Christofides ND, Bloom SR (1980) Responses of pancreatic and gastrointestinal hormones and growth hormone to oral and intravenous glucose and insulin hypoglycemia in Chaga’s disease. Gut 21: 772–777

    Article  PubMed  CAS  Google Scholar 

  • Marker JC, Hirsch IB, Smith LJ, Parvin CA, Holloszy JO, Cryer PE (1991) Catecholamines in prevention of hypoglycemia during exercise in humans. Am J Physiol 260: E705–E712

    PubMed  CAS  Google Scholar 

  • Maruyama H, Hisatomi A, Orci L, Grodsky GM, Unger RH (1984) Insulin within islet is a physiologic glucagon release inhibitor. J Clin Invest 74: 2296–2299

    Article  PubMed  CAS  Google Scholar 

  • McCall AL (1993) Effects of glucose deprivation on glucose metabolism in the central nervous system. In: Frier BM, Fisher BM (eds) Hypoglycaemia and diabetes. Arnold, London, pp 56–71

    Google Scholar 

  • Mitrakou A, Ryan C, Veneman T, Mokan M, Jenssen T, Kiss I, Durrant J, Cryer P, Gerich J (1991) Hierarchy of glycemic thresholds for counterregulatory hormone secretion, symptoms and cerebral dysfunction. Am J Physiol 260: E67–E74

    PubMed  CAS  Google Scholar 

  • Palmer JP, Henry DP, Benson JW, Johnson DG, Ensinck JW (1976) Glucagon re- sponse to hypoglycemia in sympathectomized man. J Clin Invest 57: 522–525

    Article  PubMed  CAS  Google Scholar 

  • Palmer JP, Werner PL, Hollander P, Ensinck JW (1979) Evaluation of the control of glucagon secretion by the parasympathetic nervous system in man. Metabolism 28: 549–552

    Article  PubMed  CAS  Google Scholar 

  • Rizza RA, Gerich JE (1979) Persistent effect of sustained hyperglucagonemia on glucose production in man. J Clin Endocrinol Metab 48: 352–355

    Article  PubMed  CAS  Google Scholar 

  • Rizza RA, Cryer PE, Gerich JE (1979) Role of glucagon, catecholamines and growth hormone in human glucose counterregulation. J Clin Invest 64: 62–71

    Article  PubMed  CAS  Google Scholar 

  • Rizza RA, Cryer PE, Haymond MW, Gerich JE (1980) Adrenergic mechanisms for the effect of epinephrine on glucose production and clearance in man. J Clin Invest 65: 682–689

    Article  PubMed  CAS  Google Scholar 

  • Rosen SG, Clutter WE, Berk MA, Shah SD, Cryer PE (1984) Epinephrine supports the postabsorptive plasma glucose concentration and prevents hypoglycemia when glucagon secretion is deficient in man. J Clin Invest 73: 405–411

    Article  PubMed  CAS  Google Scholar 

  • Samols E, Stagner JI, Ewart RBL, Marks V (1988) The order of islet microvascular cellular perfusion is B → A → D in the perfused rat pancreas. J Clin Invest 82: 350–353

    Article  PubMed  CAS  Google Scholar 

  • Sasaki K, Matsuhashi A, Murabayashi S, Aoyagi K, Baha T, Matsunaga M, Takebe K (1983) Hormonal response to insulin-induced hypoglycemia in patients with Shy Drager syndrome. Metabolism 32: 977–981

    Article  PubMed  CAS  Google Scholar 

  • Schwartz NS, Clutter WE, Shah SD, Cryer PE (1987) Glycemic thresholds for activation of glucose counterregulatory systems are higher than the threshold for symptoms. J Clin Invest 79: 777–781

    Article  PubMed  CAS  Google Scholar 

  • Sjöbom NC, Adamson U, Lins PE (1989) The prevalence of impaired glucose counterregulation during an insulin infusion test in insulin-treated patients prone to severe hypoglycaemia. Diabetologia 32: 818–825

    Article  PubMed  Google Scholar 

  • Sokoloff L (1989) Circulation and energy metabolism of the brain. In: Siegel G, Agranoff B, Albers RW, Molinoff P (eds) Basic neurochemistry. Raven, New York, pp 565–590

    Google Scholar 

  • Starke A, Grundy S, McGarry JD, Unger RH (1985) Correction of hyperglycemia by inducing renal malabsorption of glucose restores the glucagon response to glucose in insulin deficient dogs: implications for human diabetes. Proc Natl Acad Sci USA 82: 1544–1546

    Article  PubMed  CAS  Google Scholar 

  • Towler DA, Havlin CE, Craft S, Cryer PE (1993) Mechanism of awareness of hypoglycemia: perception of neurogenic (predominantly cholinergic) rather than neuroglycopenic symptoms. Diabetes 42: 1791–1798

    Article  PubMed  CAS  Google Scholar 

  • Tse TF, Clutter WE, Shah SD, Cryer PE (1983) Mechanisms of postprandial glucose counterregulation in man. J Clin Invest 72: 278–286

    Article  PubMed  CAS  Google Scholar 

  • Unger RH, Orci L (1995) Glucagon secretion, alpha cell metabolism, and glucagon action. In: De Groot LJ (ed) Endocrinology, 3rd edn. Saunders, Philadelphia, pp 1337–1353

    Google Scholar 

  • White NH, Skor DA, Cryer PE, Bier DM, Levandoski L, Santiago JV (1983) Identification of type 1 diabetic patients at increased risk for hypoglycemia during intensive therapy. N Engl J Med 308:485–491

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cryer, P.E. (1996). Glucagon and Glucose Counterregulation. In: Lefèbvre, P.J. (eds) Glucagon III. Handbook of Experimental Pharmacology, vol 123. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61150-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61150-6_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64718-5

  • Online ISBN: 978-3-642-61150-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics