Skip to main content

Phosphatidylcholine Biosynthesis in Saccharomyces cerevisiae: Effects on Regulation of Phospholipid Synthesis and Respiratory Competence

  • Conference paper
Molecular Dynamics of Biomembranes

Part of the book series: NATO ASI Series ((ASIH,volume 96))

Abstract

Phosphatidylcholine (PC) can be synthesized via two distinct pathways. One pathway involves three sequential methylations of phosphatidylethanolamine (PE) (Bremer et al. , 1960). Alternatively, PC can be synthesized from free choline via the CDP-choline pathway (Kennedy and Weiss, 1956). These two pathways are found in all eukaryotes so far investigated, including mammals (Bjomstad and Bremer, 1966) and yeast (Steiner and Lester, 1972; Waechter and Lester, 1973). Phospholipid biosynthesis is highly regulated in yeast. Much of the regulation occurs at the level of gene transcription in response to the soluble precursors of phospholipid biosynthesis, inositol and choline (for review see Carman and Henry, 1989; Paltauf et al. , 1992). In the presence of inositol, transcription of the coregulated biosynthetic genes IN01-Inositol-1-phosphate synthase, CHOI -Phosphatidylserine synthase, CH02/PEM1 - Phosphatidylethanolamine methyltransferase and OPI3/PEM2 -Phospholipid methyltransferase) (Figure 1) is repressed. In the absence of inositol, transcription of these genes is derepressed. If choline is added to medium in which inositol is already present, these genes are further repressed. However, if choline is present in the growth medium by itself, it has little or no effect on transcription of the co-regulated genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  • Atkinson K, Fogel S and Henry SA (1980) Yeast mutant defective in phosphatidylserine synthase. J. Biol. Chem. 255: 6653–6661.

    PubMed  CAS  Google Scholar 

  • Bjornstad P and Bremer J (1966) In vivo studies on pathways for the biosynthesis of lecithin in the rat. J. of Lipid Res. 7: 38–45.

    CAS  Google Scholar 

  • Bremer J, Figard P and Greenberg D (1960) The biosynthesis of choline and its relation to phospholipid metabolism. Biochim. Biophys. Acta 43: 477–488.

    Article  CAS  Google Scholar 

  • Carman GM and Henry SA (1989) Phospholipid biosynthesis in yeast. Ann. Rev. Biochem. 58: 635–669.

    Article  PubMed  CAS  Google Scholar 

  • Clancey CJ, Chang S and Dowhan W (1993) Cloning of a gene (PSD1) encoding phosphatidylserine decarboxylase from Saccharomyces cerevisiae by complementation of an Escherichia coli mutant. J. Biol. Chem. 268: 24580–24590.

    PubMed  CAS  Google Scholar 

  • Elion EA and Warner JR (1984) The major promoter element of rRNA transcription in yeast lies 2kb upstream. Cell 39: 663–673.

    Article  PubMed  CAS  Google Scholar 

  • Greenberg ML, Klig LS, Letts VA, Loewy BS and Henry SA (1983) Yeast mutant defective in phosphatidylcholine synthesis. J. Bacteriol. 153: 791–799.

    PubMed  CAS  Google Scholar 

  • Hjelmstad RH and Bell RM (1991) sfi-l,2-diacylglycerol choline- and ethanolaminephosphotransferases in Saccharomyces cerevisiae. Nucleotide sequence of the EPT1 gene and comparison of the CPT1 and EPT1 gene products. J. Biol. Chem. 266: 5094–5103.

    PubMed  CAS  Google Scholar 

  • Hosaka K, Tsumomu K and Yamashita S (1989) Cloning and characterization of the yeast CKI gene encoding choline kinase and its expression of Escherichia coli. J. Biol. Chem. 264: 2053–2059.

    PubMed  CAS  Google Scholar 

  • Kennedy EP and Weiss SB (1956) The function of cytidine coenzymes in the biosynthesis of phospholipids. J. Biol. Chem. 222: 193–214.

    PubMed  CAS  Google Scholar 

  • Kovac L, Gbelska I, Poliachova V, Subik J and Kovacova V(1980) Membrane mutants: A yeast mutant with a lesion in phosphatidylserine biosynthesis. Eur. J. Biochem. III: 491–501.

    Article  Google Scholar 

  • Letts VA and Henry SA (1985) Regulation of phospholipid synthesis in phosphatidylserine synthase-deficient (chol) mutants of Saccharomyces cerevisiae. J. Bacteriol. 163: 560–567.

    PubMed  CAS  Google Scholar 

  • McGraw P and Henry SA (1989) Mutations in the Saccharomyces cerevisiae opi3 gene: Effects on phospholipid methylation, growth and cross-pathway regulation of inositol synthesis. Genetics 122: 317–330.

    PubMed  CAS  Google Scholar 

  • McMaster CR and Bell RM (1994) Phosphatidylcholine biosynthesis in Saccharomyces cerevisiae: Regulatory insights from studies employing null and chimeric sn-1,2-diacylglycerol choline- and ethanolamine- phosphotransferases. J. Biol. Chem. 269: 28010–28016.

    PubMed  CAS  Google Scholar 

  • Paltauf F, Kohlwein SD and Henry SA (1992) Regulation and compartmentalization of lipid synthesis in yeast. Molecular Biology of the Yeast Saccharomyces cerevisiae Eds. J. Broach, E. Jones and J. Pringle. Cold Spring Harbor Press. 415–500.

    Google Scholar 

  • Preitschopf W, Luckl H, Summers E, Henry SA, Paltauf F and Kohlwein SD (1993) Molecular cloning of the yeast OPI3 gene as a high copy number suppressor of the cho2 mutant. Curr. Genet. 23: 95–101.

    CAS  Google Scholar 

  • Steiner MR and Lester RL (1972) in vitro studies of phospholipid biosynthesis in Saccharomyces cerevisiae. Biochim. Biophys. Acta 260: 222–243.

    PubMed  CAS  Google Scholar 

  • Summers EF, Letts VA, McGraw P and Henry SA (1988) Saccharomyces cerevisiae cho2 mutants are deficient in phospholipid methylation and cross-pathway regulation of inositol synthesis. Genetics 120: 909–922.

    PubMed  CAS  Google Scholar 

  • Trotter PJ, Pedretti J and Voelker DR (1993) Phosphatidylserine decarboxylase from Saccharomyces cerevisiae. J. Biol. Chem. 268: 21416–21424.

    PubMed  CAS  Google Scholar 

  • Trotter PJ and Voelker DR (1995) Identification of a non-mitochondrial phosphatidylserine decarboxylase activity (PSD2) in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 270: 6062–6070.

    Article  PubMed  CAS  Google Scholar 

  • Waechter C and Lester R (1973) Differential regulation of the N-methyltransferases responsible for phosphatidylcholine synthesis in Saccharomyces cerevisiae. Arch. Biochem. Biophys. 158: 401–410.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Griac, P., Henry, S.A. (1996). Phosphatidylcholine Biosynthesis in Saccharomyces cerevisiae: Effects on Regulation of Phospholipid Synthesis and Respiratory Competence. In: Op den Kamp, J.A.F. (eds) Molecular Dynamics of Biomembranes. NATO ASI Series, vol 96. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61126-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61126-1_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64707-9

  • Online ISBN: 978-3-642-61126-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics