Skip to main content

The Effect of Sterol Side Chain Conformation on Lateral Lipid Domain Formation in Monolayer Membranes

  • Conference paper
Molecular Dynamics of Biomembranes

Part of the book series: NATO ASI Series ((ASIH,volume 96))

  • 119 Accesses

Abstract

The unique structure of cholesterol appears to have evolved to give the molecule important functions and properties as a membrane component. The amphiphilic properties of cholesterol are provided by the hydrophilic 3P-hydroxy group, the hydrophobic tetracyclic ring structure, and the isooctyl side chain at position C-17. The side chain seems to be important for proper interactions with phospholipids in membranes [Demel et al. , 1972a; Demel et al. , 1972b]. 5-Androsten-3P-ol, which lacks the isooctyl side chain, can neither condense dipalmitoylphosphatidylcholine (DPPC) monolayers [Demel et al. 1972a; Slotte et al. , 1994], nor reduce the solute permeability of phosphatidylcholine liposomes [Nakamura et al. , 1980]. Sterols having shorter or longer side chains, as compared to the isooctyl chain of cholesterol, are also less effective as rigidifiers in phospholipid bilayer membranes than cholesterol [Suckling & Boyd, 1976; Craig et al. , 1978; Suckling et al. , 1979]. A study from our laboratory using cholesterol oxidase as a probe for the strength of sterol-phospholipid interaction also reported a significant difference in sterol/phospholipid interaction in both small unilamellar vesicles and monolayers as a function of the sterol side chain composition [Slotte et al. , 1994].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ben-Yashar, V. and Barenholtz, Y. (1989) The interaction of cholesterol and cholest-4-en-3-one with dipalmitoylphosphatidylcholine. Comparison based on the use of three fluorophores. Biochim. Biophys. Acta 985, 271–278.

    Article  PubMed  CAS  Google Scholar 

  • Bittman, R., Kasireddy, C.R., Mattjus, P. and Slotte, J.P. (1994) Interaction of cholesterol with sphingomyelin in monolayers and vesicles. Biochemistry 33, 11776–11781.

    Article  PubMed  CAS  Google Scholar 

  • Craig, I.F., Boyd, G.S. and Suckling, K.E. (1978) Optimum interaction of sterol side chains with phosphatidylcholine. Biochim. Biophys. Acta 508, 418–421.

    Article  PubMed  CAS  Google Scholar 

  • Demel, R.A., Bruckdorfer, K.R. and van Deenen, L.L.M. (1972a) The effect of sterol structure on the permeability of liposomes to glucose, glycerol and Rb+. Biochim. Biophys. Acta 255, 321–330.

    Article  PubMed  CAS  Google Scholar 

  • Demel, R.A., Geurts van Kessel, W.S.M. and van Deenen, L.L.M. (1972b) The properties of polyunsaturated lecithins in monolayers and liposomes and the interaction of these lecithins with cholesterol. Biochim. Biophys. Acta 266, 26–40.

    Article  CAS  Google Scholar 

  • Gallay, J. and de Kruijff, B. (1982) Correlation between molecular shape and hexagonal Hn phase promoting ability of sterols. FEBS Lett. 143, 133–136.

    Article  PubMed  CAS  Google Scholar 

  • Keller, D., Korb, J.P. and McConnell, H.M. (1987) Theory of shape transitions in two-dimensional phospholipid domains. J. Phys. Chem. 91, 6417–6422.

    Article  CAS  Google Scholar 

  • Lund-Katz, S., Laboda, H.R., McLean, L.R. and Phillips, M.C. (1988) Influence of molecular packing and phospholipid type on rates of cholesterol exchange. Biochemistry 27, 3416–3423.

    Article  PubMed  CAS  Google Scholar 

  • Mattjus, P., Bittman, R., Vilcheze, C. and Slotte, J.P. (1995), submitted to Biochim. Biophys. Acta.

    Google Scholar 

  • Mattjus, P. and Slotte, J.P. (1994) Availability for enzyme-catalyzed oxidation of cholesterol in mixed monolayers containing both phosphatidylcholine and sphingomyelin. Chem. Phys. Lipids 71, 73–81.

    Article  PubMed  CAS  Google Scholar 

  • Mcintosh, T.J., Simon S.A., Needham D. and Huang C-h. (1992) Structure and cohesive properties of sphingomyelin/cholesterol bilayers. Biochemistry 31, 2012–2020.

    Article  PubMed  CAS  Google Scholar 

  • McLean, L.R. and Phillips, M.C. (1982) Cholesterol desorption from clusters of phosphatidylcholine and cholesterol in unilamellar vesicle bilayers during lipid transfer exchange. Biochemistry 21, 4053–4059.

    Article  PubMed  CAS  Google Scholar 

  • McMullen, T.P.W., Vilcheze, C., McElhaney, R.N. and Bittman, R. (1995) Differential scanning calorimetric study of the effects of sterol side-chain length and structure on dipalmitoylphosphatidylcholine thermotropic phase behavior. Biophys. J. 69, 169–176.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura, T., Nishikawa, M., Inoue, K., Nojima, S., Akiyama, T. and Sankawa, U. (1980) Phosphatidylcholine liposomes containing cholesterol analogues with side chains of various lengths. Chem. Phys. Lipids 26, 101–110.

    Article  PubMed  CAS  Google Scholar 

  • Rubinstein, J.L.R., Owicki, J.C. and McConnell, H.M. (1980) Dynamic properties of binary mixtures of phosphatidylcholines and cholesterol. Biochemistry 19, 569–573.

    Article  Google Scholar 

  • Schroeder, F., Jefferson, J.R., Kier, A.B., Knittel, J., Scallen, T.J., Wood, W.G. and Hapala, I. (1991) Membrane cholesterol dynamics: Cholesterol domains and kinetic pools. Proc. Soc. Exp. Biol. Med. 196, 235–252.

    PubMed  CAS  Google Scholar 

  • Seul, M. and Sammon, M.J. (1990) Competing interactions and domain-shape instabilities in a monomolecular film at an air-water interface. Phys. Rev. Lett. 64, 1903–1906.

    Article  PubMed  CAS  Google Scholar 

  • Slotte, J.P. (1992) Enzyme-catalyzed oxidation of cholesterol in mixed phospholipid monolayers reveals the stoichiometry at which free cholesterol clusters disappears. Biochemistry 31, 5472–5477.

    Article  PubMed  CAS  Google Scholar 

  • Slotte, J.P. (1995) Lateral domain formation in mixed monolayers containing cholesterol and dipalmitoyl phosphatidylcholine or N-palmitoyl sphingomyelin. Biochim. Biophys. Acta (in press).

    Google Scholar 

  • Slotte, J.P. and Mattjus, P. (1994) Visualization of lateral phases in cholesterol and phosphatidylcholine monolayers at the air/water interface - a comparative study with two different reporter molecules. Biochim. Biophys. Acta 1254, 22–29.

    Google Scholar 

  • Slotte, J.P., Jungner, M., Vilcheze, C. and Bittman, R. (1994) Effects of sterol side-chain structure on sterol-phosphatidylcholine interactions in monolayers and small unilamellar vesicles. Biochim. Biophys. Acta 1190, 435–443.

    Article  PubMed  CAS  Google Scholar 

  • Subramaniam, S. and McConnell, H.M. (1987) Critical Mixing in Monolayer Mixtures of Phospholipid and Cholesterol. J. Phys. Chem. 91, 1715–1718.

    Article  CAS  Google Scholar 

  • Suckling, K.E. and Boyd, G.S. (1976) Interaction of the cholesterol side-chain with egg lecithin. Biochim. Biophys. Acta 436, 295–300.

    Article  PubMed  CAS  Google Scholar 

  • Suckling, K.E., Blair, H.A.F, Boyd, G.S., Craig, I.F. and Malcolm, B.R. (1979) The importance of the phospholipid bilayer and the length of the cholesterol molecule in membrane structure. Biochim. Biophys. Acta 551, 10–21.

    Article  PubMed  CAS  Google Scholar 

  • von Tscharner, V. and McConnell, H.M. (1981) An alternative view of phospholipid phase behavior at the air-water interface: Microscope and film balance studies. Biophys. J. 36, 409–419.

    Article  Google Scholar 

  • Weis, R.M. (1991) Fluorescence microscopy of phospholipid monolayer phase transitions. Chem. Phys. Lipids 57, 227–239.

    Article  PubMed  CAS  Google Scholar 

  • Yeagle, P.L. (1993) The biophysics and cell biology of cholesterol: An hypothesis for the essential role of cholesterol in mammalian cells. In Cholesterol in Model Membranes (Finegold, L.X., ed.), pp. 1–12, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Yu, H. and Hui, S.W. (1992) Methylation effects on the microdomain structures of phosphatidylethanolamine monolayers. Chem. Phys. Lipids 62, 69–78.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mattjus, P., Slotte, J.P., Vilchèze, C., Bittman, R. (1996). The Effect of Sterol Side Chain Conformation on Lateral Lipid Domain Formation in Monolayer Membranes. In: Op den Kamp, J.A.F. (eds) Molecular Dynamics of Biomembranes. NATO ASI Series, vol 96. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61126-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61126-1_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64707-9

  • Online ISBN: 978-3-642-61126-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics