Skip to main content

Applications of Near-field Microscopes to Cell Biology

  • Conference paper
  • 85 Accesses

Part of the book series: NATO ASI Series ((ASIH,volume 95))

Abstract

Near-field microscopes are based on various physical principles but they all involve scanning a macroscopic tip over the observed sample. In fact, an important part of the discovery made by Binnig and Rohrer (Nobel Prize in physics in 1986 for the scanning tunneling microscope, Binnig and Rohrer, 1982) was that piezoelectric devices are capable of controlled movements in the sub-nanometer range. Today, in near-field microscopy, a single piezoelectric tube is responsible for tip (or sample) scanning and for the control of the distance between the tip and the sample.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beckmann M, Kold HA and Lang F (1994) Atomic force microscopy of peritoneal macrophages after particle phagocytosis. J Membrane Biol 140:197–204

    Article  CAS  Google Scholar 

  • Bezanilla M, Bustamante CJ and Hansma HG (1993) Improved visualization of DNA in aqueous buffer with the atomic force microscope. Scanning Microsc 7:1145–1148

    CAS  Google Scholar 

  • Binnig G and Rohrer H (1982) The scanning tunneling microscope. Helv Phys Acta 55:726–733

    CAS  Google Scholar 

  • Binnig G, Quate CF and Gerber Ch (1986) Atomic force microscope. Phys Rev Lett 56:930–933

    Article  PubMed  Google Scholar 

  • Bonfiglio A, Parodi MT and Tonini GP (1995) Subcellular details of early events of differentiation induced by retinoic acid in human neuroblastoma cells detected by atomic force microscope. Exp Cell Res 216:73–79

    Article  PubMed  CAS  Google Scholar 

  • Bottomley LA, Haseltine JN, Allison DP, Warmack RJ, Thundat T, Sachleben RA, Brown GM, Woychik RP, Bruce-Jacobson K and Ferrei TL (1993) Scanning microscopy of DNA: the chemical modification of gold for immobilization of DNA. J Vac Sci Technol A10:591–595

    Google Scholar 

  • Braunstein D and Spudich A (1994) Structure and activation dynamics of RBL-2H3 cells observed with scanning force microscopy. Biophys J 66:1717–1725

    Article  PubMed  CAS  Google Scholar 

  • Eppell SJ, Simmons SR, Albrecht RM and Marchant RE (1995) Cell-surface receptors and proteins on platelet membranes imaged by scanning force microscopy using immunogold contrast enhancement. Biophys J 68:671–680

    Article  PubMed  CAS  Google Scholar 

  • Florin EL, Moy VT and Gaub HE (1994) Adhesion forces between individual ligand-receptor pairs. Science 264:415–417

    Article  PubMed  CAS  Google Scholar 

  • Fritz M, Radmacher T and Gaub HE (1994) Granula motion and membrane spreading during activation of human platelets imaged by atomic force microscopy. Biophys J 67:36–41

    Article  Google Scholar 

  • Guckenberger R, Heim M, Ceuc G, Knapp HF, Wiegrabe W and Hillebrand A (1994) Scanning tunneling microscopy of insulators and biological specimen based on lateral conductivity of ultrathin water films. Science 266:1538–1540

    Article  PubMed  CAS  Google Scholar 

  • Häberle W, Hörber JKH, Ohnesorge F, Smith DPE and Binnig G (1992) In situ investigations of single living cells infected by viruses. Ultramicroscopy 42–44:1161–1167

    Article  PubMed  Google Scholar 

  • Hamers RJ, Tromp RM and Demuth JE (1986) Surface structure of Si(l 1 l)-(7×7) resolved in real space. Phys Rev Lett 56:1972–1975

    Article  PubMed  CAS  Google Scholar 

  • Hansma HG, Bezanilla M, Zenhausern F, Adrian M and Sinsheimer RL (1993) Atomic force microscopy of DNA in aqueous solutions. Nucl Acid Res 21:505–512

    Article  CAS  Google Scholar 

  • Hansma HG, Weisenhorn AL, Edmunson AB, Gaub HE and Hansma PK (1991) Atomic force microscopy: seeing molecules of lipid and immunoglobulin. Clin Chem 37/9:1497–1501

    PubMed  CAS  Google Scholar 

  • Henderson E, Haydon PG and Sakaguchi DS (1992) Actin filament dynamics in living glial cells imaged by atomic force microscopy. Science 257:1944–1946

    Article  PubMed  CAS  Google Scholar 

  • Hoh JH, Sosinsky GE, Revel JP and Hansma PK (1993) Structure of the extracellular surface of the Gap junction by atomic force microscopy. Biophys J 65:149–163

    Article  PubMed  CAS  Google Scholar 

  • Ill CR, Keivens VM, Hale JE, Nakamura KK, Jue RA, Cheng S, Melcher ED, Drake B and Smith MC (1993) A COOH-terminal peptide confers regiospecific orientation and facilitates atomic force microscopy of an IgGl. Biophys J 64:919–924

    Article  PubMed  CAS  Google Scholar 

  • Karrasch S, Dolder M, Schabert F, Ramsden J and Engel A (1993) Covalent binding of biological samples to solid supports for scanning probe microscopy in buffer solution. Biophys J 65:2437–2446

    Article  PubMed  CAS  Google Scholar 

  • Karrasch S, Hegerl R, Hoh JH, Baumeister W and Engel A (1994a) Atomic force microscopy produces faithful high-resolution images of protein surfaces in an aqueous environment. Proc Natl Acad Sci USA 91:836–838

    Article  PubMed  CAS  Google Scholar 

  • Karrasch S, Heins S, Aebi U and Engel A (1994b) Exploring intermediate filaments structure with the scanning force microscope: comparison with transmission electron microscopy data. J Vac Sci Technol B12:1474–1477

    Google Scholar 

  • Marilley M, Pasero P, Humbert A, Granjeaud S, Dayez M, Pierrisnard R and Jordan B (1994) Scanning tunneling microscopy study of a DNA fragment of known size and sequence. Microsc Microanal Microstruct 5:47–56

    Article  CAS  Google Scholar 

  • Parpura V, Haydon PG and Henderson E (1993) Three-dimensional imaging of living neuron and glia with the atomic force microscope. J Cell Sci 104:427–432

    PubMed  Google Scholar 

  • Pasero P, Blettry C, Marilley M, Jordan B, Granjeaud S, Dayez M and Humbert A (1994) Scanning tunneling investigation of DNA structures involved in gene regulation. J Vac Sci Technol B12:1521–1525

    Google Scholar 

  • Pohl DW (1986) Near-field scanning optical microscopy. IBM J Res Dev 30:417–419

    Article  CAS  Google Scholar 

  • Putman AJ, de Grooth BG, Hansma PK, van Hulst NF and Greve J (1993) Immunogold labels: cell surface markers in atomic force microscopy. Ultramicroscopy 48:177–182

    Article  CAS  Google Scholar 

  • Rees WA, Keller RW, Vesenka JP, Yang G and Bustamante C (1993) Evidence of DNA bending in transcription complexes imaged by scanning force microscopy. Science 260:646–1649

    Article  Google Scholar 

  • Rocca-Serra J, Thimonier J, Chauvin JP and Barbet J (1994) Scanning tunneling microscopy of proteins of the immunoglobulin super-family. J Vac Sci Technol B12:1490–1493

    Google Scholar 

  • Schabert FA and Engel A (1994) Reproducible acquisition of Escherichia coli porin surface topographs by atomic force microscopy. Biophys J 67:2394–2403

    Article  PubMed  CAS  Google Scholar 

  • Schoenenberger CA and Hoh JH (1994) Slow cellular dynamics in MDCK and R5 cells monitored by time-lapse atomic force microscopy. Biophys J 67:929–936

    Article  PubMed  CAS  Google Scholar 

  • Smith DPE, Hörber H, Gerber C and Binnig G (1989) Smectic liquid crystal monolayers on graphite observed by scanning tunneling microscopy. Science 245:43–45

    Article  PubMed  CAS  Google Scholar 

  • Thimonier J, Chauvin JP, Barbet J and Rocca-Serra JP (1994) Scanning tunneling microscopy of monoclonal immunoglobulin G. Microsc Microanal Microstruct 5:341–349

    Article  CAS  Google Scholar 

  • Thimonier J, Chauvin JP, Barbet J and Rocca-Serra J. Preliminary studies of an immunoglobulin M by near-field microscopies. J Trace Microprobe Tech, in press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Barbet, J., Thimonier, J., Rocca-Serra, J. (1996). Applications of Near-field Microscopes to Cell Biology. In: Jacquamin-Sablon, A. (eds) Flow and Image Cytometry. NATO ASI Series, vol 95. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61115-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61115-5_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64701-7

  • Online ISBN: 978-3-642-61115-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics