Skip to main content

Flow Cytometric Immunophenotyping Using Cluster Analysis And Cluster Editing

  • Conference paper
Flow and Image Cytometry

Part of the book series: NATO ASI Series ((ASIH,volume 95))

Abstract

Flow cytometry is the best method for classifying leukemias and lymphomas (Braylan, 1989; Braylan, 1993; Deegan, 1989; Drexler, 1987; Duque, 1993; Foon, 1986; Neame, 1986; Stewart, 1989, 1990A, 1990B, Terstappen, 1988; Verwer, 1993; Weber, 1990; Wilman, 1989). In a flow cytometer, a distinct group of cells is identified by its repertoire of cell surface markers or epitopes. An epitope is labeled using a monoclonal antibody with an attached fluorochrome. A flow cytometer is used to detect the monoclonal antibody through its attached fluorochrome, which, in turn, identifies an epitope on a cell. Appropriate combinations of monoclonal antibodies provide a set of probes for labeling all important epitopes. This process enables the identification of cell types in a specimen. For three-color immunophenotyping, the set of three different probes is referred to as a panel. Each panel is designed to label a specific set of cell types. A panel of three probes provides more information about specific groups of cells than do panels of one or two probes. This additional information requires the use of more complex data analysis methods than are now available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bakker Schut TC, De Grooth BG, Greve J. Cluster analysis of flow cytometric list mode data on a personal computer. Cytometry 14:649–659, 1993.

    Article  PubMed  CAS  Google Scholar 

  • Bartels PH, Olson GB, Jeter, WS, Wied GL: Evaluation of unsupervised learning algorithms in computer analysis of lymphocytes. Acta Cytol. 18:376–388, 1974.

    PubMed  CAS  Google Scholar 

  • Beckman RJ, Salzman GC, Stewart CC: Classification and Regression Trees for Bone Marrow Immunophenotyping. Cytometry, 1995, in press.

    Google Scholar 

  • Braylan RC, Benson NA: Flow cytometric analysis of lymphoma. Arch. Pathol. Lab. Med. 113:627–633, 1989.

    PubMed  CAS  Google Scholar 

  • Braylan RC: Lymphomas. In: Clinical Flow Cytometry. Principles and Applications, Bauer KD, Duque RE, Shankey TV (eds). Williams and Wilkins, Baltimore, 1993, pp. 203–234.

    Google Scholar 

  • Breiman L, Friedman JH, Olshen RA, Stone CJ: Classification and Regression Trees. Wadsworth and Brooks, Monterey, CA, 1984.

    Google Scholar 

  • Conrad MP: A rapid, nonparametric clustering scheme for flow cytometry data. Pattern Recog. 20:229–235, 1987.

    Article  Google Scholar 

  • Crowell JM, Hiebert RD, Salzman GC, Price BJ, Cram LS, Mullaney PF: A light-scattering system for high-speed cell analysis. IEEE Trans. Biomed. Engin. BME–25:519–526, 1978.

    Article  Google Scholar 

  • Davies DL, Bouldin DW: A cluster separation measure. IEEE Transactions on Pattern Analysis and Machine Intelligence. PAMI–1:224–227, 1979.

    Article  CAS  Google Scholar 

  • Deegan MJ: Membrane antigen analysis in the diagnosis of lymphoid leukemias and lymphomas. Arch. Pathol. Lab. Med. 113:606–618, 1989.

    PubMed  CAS  Google Scholar 

  • Demers S, Kim J, Legendre P, Legendre L: Analyzing multivariate flow cytometric data in the aquatic sciences. Cytometry 13: 291–298, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Drexler HG: Classification of acute myeloid leukemias - a comparison of FAB and immunophenotyping. Leukemia 1: 697–705, 1987.

    PubMed  CAS  Google Scholar 

  • Duque RE: Acute Leukemias. In: Clinical Flow Cytometry. Principles and Applications, Bauer KD, Duque RE, Shankey TV (eds). Williams and Wilkins, Baltimore, 1993, pp. 235–246.

    Google Scholar 

  • Foon KA, Todd RF: Immunologic classification of leukemia and lymphoma. Blood 68: 1–31, 1986.

    PubMed  CAS  Google Scholar 

  • Genter FC, Salzman GC: A statistical approach to the classification of biological cells from their diffraction patterns. J. Histochem. Cytochem. 27:268–272, 1979.

    Article  PubMed  CAS  Google Scholar 

  • Kosugi Y, Sato R, Genka S, Shitara N, Takakura K: An interactive multivariate analysis of FCM data. Cytometry 9:405–408, 1988.

    Article  PubMed  CAS  Google Scholar 

  • Mahalanobis PC: On the generalized distance in statistics. Proc. Natl. Inst. Sci. India 2:49–55, 1936.

    Google Scholar 

  • Milligan GW, Cooper MC: An examination of procedures for determining the number of clusters in a data set. Psychometrika 50: 159–179, 1985.

    Article  Google Scholar 

  • Murphy RF: Automated identification of subpopulations in flow cytometric list mode data using cluster analysis. Cytometry 6:302–309, 1985.

    Article  PubMed  CAS  Google Scholar 

  • Neame PB, Soamboonsrup P, Browman GP, Meyer RM, Benger A, Wilson WE, Walker IR, Saeed N, McBride JA: Classifying acute leukemia by immunophenotyping: a combined FAB - immunologic classification of AML. Blood 68: 1355–1362, 1986.

    PubMed  CAS  Google Scholar 

  • Ryan DH: Detection of minimal residual disease by flow cytometry. In: Clinical Flow Cytometry. Principles and Applications, Bauer KD, Duque RE, Shankey TV (eds). Williams and Wilkins, Baltimore, 1993, pp. 479–496.

    Google Scholar 

  • Salzman GC, Crowell JM, Goad CA, Hansen KM, Hiebert RD, LaBauve PM, Martin JC, Ingram M, Mullaney PF: A flow-sytem multiangle light scattering instrument for cell characterization. Clin. Chem. 21:1297–1304, 1975.

    CAS  Google Scholar 

  • Salzman GC, Crowell JM, Hansen KM, Ingram M, Mullaney PF: Gynecologic specimen analysis by multiangle light scattering in a flow system. J. Histochem. Cytochem. 24:308–314, 1976.

    Article  PubMed  CAS  Google Scholar 

  • Salzman GC, Hiebert RD, Crowell JC: Data acquisition and display for a high speed cell sorter. Comput. Biomed. Res. 11:77–88,1978.

    CAS  Google Scholar 

  • Salzman GC, Wilkins SF, Whitfil JA. Modular computer programs for flow cytometry and sorting. Cytometry 1: 325–336, 1981.

    Article  PubMed  CAS  Google Scholar 

  • Salzman GC, Stewart CC, Duque RE: Expert systems for flow cytometry data analysis: a preliminary report. In: New technologies in cytometry and molecular biology. Salzman GC (ed). Proc. SPIE 1206:98–105, 1990A.

    Google Scholar 

  • Salzman GC, Duque RE, Braylan RC, Stewart CC: A CLIPS expert system for clinical flow cytometry data analysis. In: Proceedings of the 1st CLIPS user’s group conference, Houston, Texas, 13–15 August 1990B.

    Google Scholar 

  • Salzman GC, Bartels PH: Expert systems for cytometry data analysis. In: Clinical Flow Cytometry. Principles and Applications, Bauer KD, Duque RE, Shankey TV (eds). Williams and Wilkins, Baltimore, 1993, pp. 585–601.

    Google Scholar 

  • Späth H: Cluster dissection and analysis. Theory, FORTRAN programs and examples. Halsted Press. John Wiley and Sons, New York, 1985.

    Google Scholar 

  • Stewart CC: Multiparameter flow cytometry for clinical applications. In: New technologies in cytometry. Salzman GC (ed). Proc. SPIE 1063:150–160, 1989.

    Google Scholar 

  • Stewart CC: Cell preparation for the identification of leukocytes. In: Methods in Cell Biology, Volume 33, Flow Cytometry. Darzynkiewicz Z, Crissman C (eds). Ch. 39. Academic Press, San Diego, 1990A.

    Google Scholar 

  • Stewart CC: Multiparameter analysis of leukocytes by flow cytometry. In: Methods in Cell Biology, Volume 33, Flow Cytometry. Darzynkiewicz Z, Crissman C (eds). Ch. 40. Academic Press, San Diego, 1990B.

    Google Scholar 

  • Terstappen LWMM, Loken MR: Five-dimensional flow cytometry as a new approach for blood and bone marrow differentials. Cytometry 9:548–556, 1988.

    Article  PubMed  CAS  Google Scholar 

  • Verwer BJH, Terstappen WMM: Automatic lineage assignment of acute leukemias by flow cytometry. Cytometry Suppl. 6: 44, 1993.

    Google Scholar 

  • Weber JE, Bartels PH: Statistical identification of subpopulations for flow cytometric data. In: New technologies in cytometry and molecular biology. Salzman GC (ed). Proc. SPIE 1206:19–30, 1990.

    Google Scholar 

  • Wilman C, Stewart CC: General principles of multiparameter flow cytometric analysis: applications of flow cytometry in the diagnostic pathology laboratory. Semin. Diagn. Pathol. 6:3–12, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Salzman, G.C., Beckman, R.J., Parson, J.D., Nauman, A.M., Stewart, S.J., Stewart, C.C. (1996). Flow Cytometric Immunophenotyping Using Cluster Analysis And Cluster Editing. In: Jacquamin-Sablon, A. (eds) Flow and Image Cytometry. NATO ASI Series, vol 95. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61115-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61115-5_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64701-7

  • Online ISBN: 978-3-642-61115-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics