Skip to main content

High Resolution Lacustrine Sediments and Their Potential for Palaeoclimatic Reconstruction

  • Conference paper

Part of the book series: NATO ASI Series ((ASII,volume 41))

Abstract

Annually laminated (varved) sediment records are high resolution archives of palaeoenvironmental conditions. They can provide an absolute chronology based on calendar (siderial) years and information about processes in the lake and the catchment area (e.g. through varve thickness measurements). The dominating factor controlling the depositional system is climate and anthropogenic change. The climate-varve link is considerably well understood for proglacial lakes with clastic varves: mean summer temperature controls varve thickness in continental climate regimes, whereas mean summer precipitation controls varve thickness in oceanic climate regimes. The signal in midlatitudinal organic varves is more complex. In addition to the allochthonous sediment component, autochthonous organic productivity becomes a dominant factor modifying the yearly increment. This seems not to be the case in the sediments of Lake Holzmaar (Germany) since BC 750, when vegetation was removed due to human impact making soils susceptible to increased erosion. The increase in varve thickness can be mainly related to minerogenic detritus which is regarded as a discharge proxy. A climate-varve link is elaborated through a negative correlation of varve thicknesses with mean seasonal temperatures of winter and spring during the last 30 years, when instrumental data are available. Extrapolating this relationship to the last millennium, colder winters are indicated around AD 1300, 1500, and from 1650 to 1900. Colder winters might be related to sun spot minima except for the period AD 1715 to 1900 when other forcing factors, such as increased volcanic activity, may have played a role.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson RY (1977) Short-term sedimentation response in lakes in western United States as measured by automated sampling. Limnol Oceanogr 22: 423–433

    Article  Google Scholar 

  • Anderson RY (1992) Solar variability captured in climatic and high-resolution palaeoclimatic records: A geologic perspective. In: Sonett CP, Giampapa MS (eds), The sun in time; Tucson, Univ of Arizona Press, Space Sci Ser, 543–561

    Google Scholar 

  • Anderson RY (1993) The varve chronometer in Elk Lake: Record of climatic variability and evidence for solar-geomagnetic-14C-climate connection. Geol Soc Am Spec Pap 276: 45–67

    Google Scholar 

  • Anderson RY, Dean WE (1988) Lacustrine varve formation through time. Palaeogeography, -climatology, -ecology 62: 215–235

    Article  Google Scholar 

  • Anderson RY, Koopmans LH (1963) Harmonic analysis of varve time series. J Geophys Res 68: 877–893

    Article  Google Scholar 

  • Anderson RY, Dean WE, Bradbury JP, Love D (1985) Meromictic lakes and varved lake sediments in North America. US Geol Surv Bull 1607, 19 p

    Google Scholar 

  • Boyle J (1993) The Swedish varve chronology - a review. Progr Phys Geogr 17: 1–19

    Article  Google Scholar 

  • Bradbury JP, Dean WE (1993) Elk Lake, Minnesota: Evidence for rapid climate change in the North-Central United States. Geological Society of America Special Paper 276

    Google Scholar 

  • Bradley RS, Jones PD (1992) Records of explosive volcanic eruptions over the last 500 years. In: Bradley RS, Jones PD (eds), Climate since AD 1500; Routledge (London), 606–622

    Google Scholar 

  • Bradley RS, Jones PD (1993) “Little Ice Age” summer temperature variations: their nature and relevance to recent global warming trends. The Holocene 3: 367–376

    Google Scholar 

  • Bradley RS, Retelle MJ, Ludlam SD, Hardy DR, Zolitschka B, Lamoureux SF (1995) The Taconite Inlet project: A systems approach to palaeoclimatic reconstruction. J Paleolimnol (in press)

    Google Scholar 

  • Brauer A (1994) Weichselzeitliche Seesedimente des Holzmaares - Warvenchronologie des Hochglazials und Nachweis von Klimaschwankungen. Documenta naturae 85: 1–210

    Google Scholar 

  • Brauer A, Hajdas I, Negendank JFW, Vos H, Rein B, Zolitschka B (1994) Warvenchronologie - Eine Methode zur absoluten Datierung und Rekonstruktion kurzer und mittlerer solarer Periodizitäten. Geowiss 12: 325–332

    Google Scholar 

  • Büchel G (1993) Maars of the Westeifel. Lecture Notes in Earth Sci 49: 1–13

    Article  Google Scholar 

  • Church M (1988) Floods in cold regions. In: Baker VR, Kochel RC, Patton PC (eds), Flood geomorphology; Wiley (New York), 205–229

    Google Scholar 

  • Church M, Kellerhals R, Day TJ (1989) Regional clastic sediment yield in British Columbia. Can J Earth Sci 26: 31–45

    Article  Google Scholar 

  • Collins ND (1990) Seasonal and annual variations of suspended sediment transported in meltwater draining from an Alpine glacier. IAHS Publ 193: 439–446

    Google Scholar 

  • Cromack M (1991) Interpretation of laminated sediments from glacier-fed lakes, northwest Spitsbergen. Norsk Geol Tidsskrift 71: 129–132

    Google Scholar 

  • Crowley KD, Duchon CE, Rhi J (1986) Climate record in varved sediments of the Eocene Green River Formation. J Geophys Res D91: 8637–8647

    Article  Google Scholar 

  • Damnati B, Taieb M, Williamson D (1992) Laminated deposits from Lake Magadi (Kenya). Climatic contrast effect during the maximum wet period between 12,000-10,000 yrs BP. Bull Soc Geol France 163: 407–414

    Google Scholar 

  • Dean WE, Bradbury JP, Anderson RY, Barnosky CW (1984) The variability of Holocene climate change: Evidence from varved lake sediments. Science 226: 1191–1194

    Article  Google Scholar 

  • Degens ET, Wong HK, Kempe S, Kurtmann F (1984) A geological study of Lake Van, eastern Turkey. Geol Rdsch 73: 701–734

    Article  Google Scholar 

  • Desloges JR (1994) Varve deposition and the sediment yield record at three small lakes of the Southern Canadian Cordillera. Arctic Alpine Res 26: 130–140

    Article  Google Scholar 

  • Doran PT (1993) Sedimentology in Colour Lake, a nonglacial high arctic lake, Axel Heiberg Island, N.W.T., Canada. Arctic Alpine Res 25: 353–367

    Article  Google Scholar 

  • Foukal P (1994) Study of solar irradiance variations holds key to climate questions. Eos, Transact Am Geophys Union 75: 377, 381–382

    Google Scholar 

  • Fritts HC (1976) Tree rings and climate. Academic Press (London, New York, San Francisco ), 567 p

    Google Scholar 

  • Gilbert R (1975) Sedimentation in Lillooet Lake, British Columbia. Can J Earth Sci 12: 1697–1711

    Article  Google Scholar 

  • Glenn CR, Kelts K (1991) Sedimentary rhythms in lake deposits. In: Einsele G, Ricken W, Seilacher A (eds), Cycles and events in stratigraphy; Springer (Berlin, Heidelberg ), 188–221

    Google Scholar 

  • Goslar T, Kuc T, Ralska-Jasiewiczowa M, Rozanski K, Arnold M, Bard E, van Geel B, Pazdur MF, Szeroczynska K, Wicik B, Wieckowski K, Walanus A (1993) High- resolution lacustrine record of the Late Glacial/Holocene transition in central Europe. Quat Sci Rev 12: 287–294

    Article  Google Scholar 

  • Griffiths GA, McSaveney MJ (1986) Sedimentation and river containment on Waitangitaona alluvial fan - South Westland, New Zealand. Z Geomorph NF 30: 215–230

    Google Scholar 

  • Haar U, Keller R, Liebscher HJ, Richter W, Schirmer H (eds) (1979) Hydrologischer Atlas der Bundesrepublik Deutschland; Boppard/Rhein

    Google Scholar 

  • Hajdas I, Zolitschka B, Ivy-Ochs SD, Beer J, Bonani G, Leroy SAG, Negendank JFW, Ramrath M, Suter M (1995) AMS radiocarbon dating of annually laminated sediments from Lake Holzmaar, Germany. Quat Sci Rev (in press)

    Google Scholar 

  • Hardy DR (1995) Climatic control of streamflow and sediment flux into Lake C2, northern Ellesmere Island, Canada. J Paleolimnol (in press)

    Google Scholar 

  • Hasel K (1985) Forstgeschichte - Ein Grundriss für Studium und Praxis; Parey ( Hamburg, Berlin ), 258 pp

    Google Scholar 

  • Haverkamp B (1991) Paläomagnetische Untersuchungen an spätquartären Maarseesedimenten zur Paläosäkularvariation im Gebiet der Westeifel während der letzten 20-25.000 Jahre. PhD thesis Univ Münster, 235 pp

    Google Scholar 

  • Haverkamp B, Beuker T (1993) A palaeomagnetic study of maar-lake sediments from the Westeifel. Lecture Notes in Earth Sci 49: 349–365

    Article  Google Scholar 

  • Hicks DM, McSaveney MJ, Chinn TJH (1990) Sedimentation in proglacial Ivory Lake, Southern Alps, New Zealand. Arctic Alpine Res 22: 26–42

    Article  Google Scholar 

  • Hicks DM, McSaveney MJ, Chinn TJH (1990) Sedimentation in proglacial Ivory Lake, Southern Alps, New Zealand. Arctic Alpine Res 22: 26–42

    Article  Google Scholar 

  • Hughes MK, Diaz HF (eds)(1994) The medieval warm period. Kluwer (Dordrecht)

    Google Scholar 

  • Jones PD, Bradley RS (1992) Climatic variations in the longest instrumental records. In: Bradley RS, Jones PD (eds), Climate since AD 1500; Routledge (London), 246–268

    Google Scholar 

  • Kelts K, Hsü KJ (1978) Freshwater carbonate sedimentation. In: Lerman A (ed), Lakes - chemistry, geology, physics; Springer (New York), 295–323

    Google Scholar 

  • Kempe S, Degens ET (1978) Lake Van varve record: The past 10,420 years. In: Degens ET, Kurtmann F (eds), The geology of Lake Van; Ankara, 56–63

    Google Scholar 

  • Lamb HH (1969) Climatic fluctuations. In: Flohn H (ed), General climatology 2; World Survey of Climatology 2: 173–249

    Google Scholar 

  • Leemann A, Niessen F (1994a) Varve formation and the climatic record in an Alpine proglacial lake: calibrating annually laminated sediments against hydrological and meteorological data. The Holocene 4: 1–8

    Article  Google Scholar 

  • Leemann A, Niessen F (1994b) Holocene glacial activity and climatic variations in the Swiss Alps: reconstructing a continuous record from proglacial lake sediments. The Holocene 4: 259–268

    Article  Google Scholar 

  • Leonard EM (1985) Glaciological and climatic controls on lake sedimentation, Canadian Rocky Mountains. Z Gletscherkunde Glazialgeol 21: 35–42

    Google Scholar 

  • Leonard EM (1986) Varve studies at Hector Lake, Alberta, Canada, and the relationship between glacial activity and sedimentation. Quat Res 25: 199–214

    Article  Google Scholar 

  • Leonard EM (1986) Varve studies at Hector Lake, Alberta, Canada, and the relationship between glacial activity and sedimentation. Quat Res 25: 199–214

    Article  Google Scholar 

  • Niessen F, Sturm M (1987) Die Sedimente des Baldeggersees (Schweiz) - Ablagerungsraum und Eutrophirungsentwicklung während der letzten 100 Jahre. Arch Hydrobiol 108: 365–383

    Google Scholar 

  • Östrem G (1975) Sediment transport in glacial meltwater streams. In: Jopling AV, McDonald BC (eds), Glaciofluvial and glaciolacustrine sedimentation. Soc. Econ. Palaeont. Mineralog Spec Publ 23: 101–122

    Google Scholar 

  • Östrem G, Olsen HC (1987) Sedimentation in a glacier lake. Geogr Ann 69A: 123–138

    Article  Google Scholar 

  • O’Sullivan PE (1983) Annually laminated lake sediments and the study of Quaternary environmental changes - a review. Quat Sci Rev 1: 245–313

    Article  Google Scholar 

  • Perfiliev BW (1929) Zur Mikrobiologie der Bodenablagerungen. Verh Intern Ver Limnol 4: 107–143

    Google Scholar 

  • Perkins JA, Sims JD (1983) Correlation of Alaskan varve thickness with climatic parameters, and use in palaeoclimatic reconstruction. Quat Res 20: 308–321

    Article  Google Scholar 

  • Pickrill RA, Irvin J (1983) Sedimentation in a deep glacier-fed lake - Lake Tekapo, New Zealand. Sedimentol 30: 63–75

    Article  Google Scholar 

  • Renberg I (1984) Varved sediments in chronology. In: Norton SA (ed), Proc Workshop Palaeolimnological studies of the history and effects of acid precipitation, Rockland, Maine, 78–85

    Google Scholar 

  • Renberg I, Segerström U (1981) Applications of varved lake sediments in palaeoenvironmental studies. Wahlenbergia 7: 125–133

    Google Scholar 

  • Renberg I, Segerström U, Wallin JE (1984) Climatic reflection in varved lake sediments. In: Mörner NA, Karlen W (eds), Climatic changes on a yearly to millennial basis; Reidel (Dordrecht), 249–256

    Google Scholar 

  • Röthlisberger H, Lang H (1987) Glacial hydrology. In: Gurnell AM, Clark MJ (eds), Glacio-fluvial sediment transfer; Wiley (New York), 207–284

    Google Scholar 

  • Saarnisto M (1986) Annually laminated lake sediments. In: Berglund B (ed), Handbook of Holocene palaeoecology and palaeohydrology. Wiley (Chichester), 343–370

    Google Scholar 

  • Schostakowitsch WB (1936) Geschichtete Bodenablagerungen der Seen als Klima-Annalen. Meteorol Zeitschr 5 /1936: 176–182

    Google Scholar 

  • Schwind W (1983) Der Wald der Vulkaneifel in Geschichte und Gegenwart. PhD thesis Univ Göttingen, 458 pp

    Google Scholar 

  • Seibold E (1958) Jahreslagen in Sedimenten der Mittleren Adria. Geol Rdsch 47: 100–117

    Article  Google Scholar 

  • Smith ND (1981) The effect of changing sediment supply on sedimentation in a glacier-fed lake. Arctic Alpine Res 13: 75–83

    Article  Google Scholar 

  • Sonett CP, Finney SA, Williams CR (1988) The lunar orbit in the late Precambrian and the Elatina sandstone laminae. Nature 335: 806–808

    Article  Google Scholar 

  • Soutar A (1975) Historical fluctuations of climatic and bioclimatic factors as recorded in a varved sediment deposit in a coastal sea. Publ World Met Org 421: 147–158

    Google Scholar 

  • Soutar A, Crill PA (1977) Sedimentation and climate patterns in the Santa Barbara Basin during the 19th and 20th centuries. Geol Soc Am Bull 88: 1161–1172

    Article  Google Scholar 

  • Stihler SD, Stone DB, Beget JE (1992) “Varve” counting vs. tephrochronology and 137Cs and 210Pb dating: A comparative test at Skilak Lake, Alaska. Geol 20: 1019–1022

    Google Scholar 

  • Stockhausen H (1994) New palaeomagnetic secular variation data of three maar lakes from the West Eifel (Germany) for the last 12,000 years. Terra nostra 1 /94: 90–98

    Google Scholar 

  • Usinger H, Wolf A (1991) Biostratigraphie mit Hilfe der Pollenanalyse und einige Aussagen zur klimatischen Entwicklung und Besiedlung durch den Menschen. In: Negendank JFW, DFG-Abschlußbericht zum Projekt “Westeifel-Maare und Quartär stratigraphie”, 12–15

    Google Scholar 

  • Wenzel I (1962) Ödlandentstehung und Wiederaufforstung in der Zentraleifel. Arb z Rhein Landesk 18: 1–119

    Google Scholar 

  • Williams GE (1981) Sunspot periods in the late Precambrian glacial climate and solar-planetary relations. Nature 291: 624–628

    Article  Google Scholar 

  • Zolitschka B (1990) Spätquartäre jahreszeitlich geschichtete Seesedimente ausgewählter Eifelmaare. Documenta naturae 60: 1–226

    Google Scholar 

  • Zolitschka B (1991) Absolute dating of late-Quaternary lacustrine sediments by high resolution varve chronology. Hydrobiol 214: 59–61

    Article  Google Scholar 

  • Zolitschka B (1992a) Climatic change evidence and lacustrine varves from maar lakes, Germany. Clim Dyn 6: 229–232

    Article  Google Scholar 

  • Zolitschka B (1992b) Human history recorded in the annually laminated sediments of Lake Holzmaar, Eifel Mountains, Germany. Geol Surv Finland Spec Pap 14: 17–24

    Google Scholar 

  • Zolitschka B, Haverkamp B, Negendank JFW (1992) Younger Dryas oscillation - varve dated microstratigraphic, palynological and palaeomagnetic records from Lake Holzmaar, Germany. In: Bard E, Broecker WS (eds), The last deglaciation: Absolute and radiocarbon chronologies. NATO ASI Ser 12: 80–101

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zolitschka, B. (1996). High Resolution Lacustrine Sediments and Their Potential for Palaeoclimatic Reconstruction. In: Jones, P.D., Bradley, R.S., Jouzel, J. (eds) Climatic Variations and Forcing Mechanisms of the Last 2000 Years. NATO ASI Series, vol 41. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61113-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61113-1_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64700-0

  • Online ISBN: 978-3-642-61113-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics