Skip to main content

Alterations in Cell Cycle Control During Tumor Progression: Effects on Apoptosis and the Response to Therapeutic Agents

  • Chapter
Attempts to Understand Metastasis Formation II

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 213/2))

Abstract

It has long been apparent that alterations in the control of the cell cycle accompany the development of tumorigenicity. The mere observation that cell growth continues in tumors whereas normal cells for the most part cease dividing and retain a diploid amount of DNA suggests that the controls regulating the normal cell cycle have failed to function in the tumor cell. In recent years the biochemical mechanisms underlying the transitions through the cell cycle have begun to be identified, and some of the gene products that are mutated in cancer cells have been shown to interact directly with these genes in control of the cell cycle. These mutated genes, as well as the cell cycle regulators, have been shown to affect whether cells undergo programmed cell death and to influence how cells respond to DNA-damaging agents that are frequently used therapeutically. Thus the genetic changes in the cell that affect cell cycle progression also have a bearing on the therapeutic outcome. While the description of the changes affecting the G0 to G1 to S phase transition is currently better understand as regards malignancy, the G2/M to phase transition also has important implications for therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agarwal ML, Agarwal A, Taylor WR, Stark GR (1995) p53 controls both the G2/M and the G1 cell cycle checkpoints and mediates reversible growth arrest in human fibroblasts. Proc Natl Acad Sci USA 92: 8493–8497

    Article  PubMed  CAS  Google Scholar 

  • Aloni-Grinstein R, Schwartz D, Rotter V (1995) Accumulation of wild type p53 protein upon gamma irradiation induces a G2 arrest-dependent immunoglobulin kappa light chain gene expression. EMBO J 14: 1392–1401

    PubMed  CAS  Google Scholar 

  • Amati B, Land H (1994) Myc-Max-Mad: a transcription factor network controlling cell cycle progression, differentiation and death. Curr Biol 4: 102–108

    CAS  Google Scholar 

  • Amati A, Littlewood TD, Evan Gl, Land H (1993) The c-myc protein induces cell cycle progression and apoptosis through dimerization with Max. EMBO J 12: 5083–5087

    PubMed  CAS  Google Scholar 

  • Bernhard EJ, Maity A, Muschel RJ, McKenna WG (1994) Increased expression of cyclin B1 mRNA coincides wirth diminished G2-phase arrest in irradiated HeLa cells treated with staurosporine or caffeine. Radiat Res 140: 393–400

    Article  PubMed  CAS  Google Scholar 

  • Bernhard EJ, Muschel RJ, Bakanauskas VJ, McKenna WG (1996) Reducing the radiation-induced G2 delay causes HeLa cells to undergo apoptosis instead of mitotic death. Int J Radiat Biol (in press)

    Google Scholar 

  • Bosch F, Jares P, Campo E, Lopez-Guillrtmo A, Piris M, Villsmor N, Tassies D, Jaffe E, Monstserrat E, Rozaman C, Cardesa A (1994) PRAD-1/Cyclin D1 gene overexpression in chronic lymphoprolifera- tive disorders: a highly specific marker of mantle cell lymphoma. Blood 84: 2726–2732

    PubMed  CAS  Google Scholar 

  • Busse P, Bose S, Jones R, Tolmach L (1977) The action of caffeine on X-irradiated HeLa cells. II. Synergistic lethality. Radiat Res 71: 666–667

    Article  PubMed  CAS  Google Scholar 

  • Callender T, el-Naggar A, Lee M, Frankenthaler R, Luna M, Batsakis J (1994) PRAD-1 (CCND1)/cyclin D1 oncogene amplification in primary head and neck squamous cell carcinoma. Cancer 74: 152–158

    Article  PubMed  CAS  Google Scholar 

  • Cheng J, Jhanwar S, Klein W, Bell D, Lee W-C, Altomare D, Nobori T, Olopade O, Buckler A, Testa J (1994) p16 alterations and deletion mapping of 9p21-p22 in malignant mesothelioma. Cancer Res 54: 5547–5551

    PubMed  CAS  Google Scholar 

  • Deng G, Zhang P, Harper JW, Elledge SJ, Leder P (1995) Mice lacking p21 cip1/waf1 undergo normal development, but are defective in G1 checkpoint control. Cell 82: 675–684

    Article  PubMed  CAS  Google Scholar 

  • Desai D, Wessling H, Fisher R, Morgan D (1995a) Effects of phosphorylation by CAK on cyclin binding by cdc2 and cdk2. Mol Cell Biol 15: 345–350

    PubMed  CAS  Google Scholar 

  • Desai D, Wessling H, Fisher R, Morgan D (1995b) Effects of phosphorylation by CAK on cyclin binding by CDC2 and CDK2. Mol Cell Biol 15: 345–350

    PubMed  CAS  Google Scholar 

  • Doree M, Galas S (1994) The cyclin-dependent protein kinases and the control of cell division. FASEB J 8: 1114–1121

    PubMed  CAS  Google Scholar 

  • Dynlacht B, Flores O, Lees J, Harlow E (1994) Differential regulation of E2F transactivation by cyclin/cdk2 complexes. Genes Dev 8: 1772–1786

    Article  PubMed  CAS  Google Scholar 

  • Eilers M, Schirm S, Bishop JM (1991) The myc protein activates transcription of the alpha-prothymosin gene. EMBO J 10: 133–141

    PubMed  CAS  Google Scholar 

  • el-Deiry W, Tokino T, Velculescu V, Levy D, Parson R, Trent J, Lin D, Mercer W, Kinzler K, Vogelstein B (1993) WAF1, a potential mediator of p53 tumor supression. Cell 75: 817–825

    Article  PubMed  CAS  Google Scholar 

  • Evan Gl, Littlewood TD (1993) The role of c-myc in cell growth. Curr Opin Genet Dev 3: 44–49

    Article  PubMed  CAS  Google Scholar 

  • Evan Gl, Gilbert CS, Littlewood TD, Land H, Brooks M, Waters CM, Penn LZ, Hancock DC (1992) Induction of apoptosis in fibroblasts by c-myc protein. Cell 69: 119–128

    Article  PubMed  CAS  Google Scholar 

  • Fan SJ, Smith ML, Rivet DJ, Duba D, Zhan QM, Kohn KW, Fornace AJ, O’Connor PM (1995) Disruption of p53 function sensitizes breast cancer MCF7 cells to cisplatin and pentoxifylline. Cancer Res 55: 1649–1654

    PubMed  CAS  Google Scholar 

  • Fornace A, Alamo I, Hollander M (1989a) DNA damage-inducible transcripts in mammalian cells. Proc Natl Acad Sci USA 85: 8800–8804

    Article  Google Scholar 

  • Fornace A, Nebert D, Hollander M, Leuthy J, Papathanasiou M, Fargnoli J, Holbrook N (1989b) Mammalian genes coordinately regulated by growth arrest signals and DNA-damaging agents. Mol Cell Biol 9: 4196–4203

    PubMed  CAS  Google Scholar 

  • Gould K, Moreno S, Owen D, Sazer S, Nurse P (1991) Phosphorylation at thr 167 is required for schizosaccharomyces pombe p34cdc2 function. EMBO J 10: 3297–3309

    PubMed  CAS  Google Scholar 

  • Guillouf C, Rosselli F, Krishnaraju K, Moustacchi E, Hoffman B, Liebermann DA (1995) p53 involvement in control of G2 exit of the cell cycle: role in DNA damage-induced apoptosis. Oncogene 11: 2263–2270

    Google Scholar 

  • Hannon GJ, Beach D (1994) p15 (INK4B) is a potential effector of TGF-beta induced cell cycle arrest. Nature 371: 257–261

    Article  PubMed  CAS  Google Scholar 

  • Harper JW, Adami GR, Wei N, Keyomarcki K, Elledge SJ (1993) The p21 cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin dependent kinases. Cell 75: 805–816

    Article  PubMed  CAS  Google Scholar 

  • Harrington EA, Bennett MR, Fanidi A, Evan Gl (1994a) c-Myc-induced apoptosis in fibroblasts in inhibited by specific cytokines. EMBO J 13: 3286–3295

    PubMed  CAS  Google Scholar 

  • Harrington EA, Fanidi A, Evan Gl (1994b) Oncogenes and cell death. Curr Opin Gene Dev 4: 120–129

    Article  CAS  Google Scholar 

  • He J, Allen J, Collins V, Allalunisturner M, Godbout R, Day R, James c (1994) Cdk4 amplification is an. alternative mechanism to p16 gene homozygous deletion in glioma cell-lines. Cancer Res 54: 5804

    PubMed  CAS  Google Scholar 

  • Heikkila R, Schwab G, Wickstrom E, Loke S, Pluznik D, Watt R, Neckers L (1987) A c-myc antisense oligodeoxynucleotide inhibits entry into S phase but not progress from GO to G1. Nature 328: 445–449

    Article  PubMed  CAS  Google Scholar 

  • Hockenbery DM, Oltvai ZN, Yin XM, Milliman CL, Korsmeyer SJ (1993) Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 75: 241–251

    Article  PubMed  CAS  Google Scholar 

  • Hunter T, Pines J (1994) Cyclins and cancer II: cyclin D and CDK inhibitors come of age. Cell 79: 573–582

    Article  Google Scholar 

  • Hussussian C, Struewing J, Goldstein A, Higgins P, Ally D, Sheahan M, Clark W, Tucker M, Dracopoli N (1994) Germline p16 mutations in familial melanoma. Nature Genet 8: 15–21

    Article  PubMed  CAS  Google Scholar 

  • Igaki H, Sasaki H, Kishi T, Sakamoto H, Tachimori Y, Kato H, Watanabe H, Sugimura T, Terada M (1994) Highly frequent homozygous deletion of the p16 gene in estophageal cancer cell lines. Biochem Biophys Res Commun 203: 1090–1095

    Article  PubMed  CAS  Google Scholar 

  • Jen J, Harper J, Bigner S, Bigner D, Papadopoulos N, Markowitz S, Willson J, Kinzler K, Vogelstein B (1994) Deletion of p16 and p15 genes in brain tumors. Cancer Res 54: 6353–6358

    PubMed  CAS  Google Scholar 

  • Jiang H, Lin J, Su Z, Collart F, Huberman E, Fisher P (1994) Induction of differentiation in human promyelocytic HL-60 leukemia cell activates p21, WAF1/CIP1, expression in the absence of p53. Oncogene 9: 3397–3406

    PubMed  CAS  Google Scholar 

  • Kamb A, Gruis N, Weaverfeldhaus J et al. (1994a) A cell cycle regulator potentially involved in genesis of many tumor types. Science 264: 436–440

    Article  PubMed  CAS  Google Scholar 

  • Kamb A, Shattuckeidens D, Eeles R et al. (1994b) Analysis of the p16 gene (cdkn2) as a candidate for the chromosome 9p melanoma susceptibility locus. Nature Genet 8: 22–26

    Article  CAS  Google Scholar 

  • Kane DJ, Safafian TA, Anton R, Hahn H, Gralla EB, Valentine JS, Ord T, Bredesen DE (1993) Bcl-2 inhibition of neural death: decreased generation of reactive oxygen species. Science 262: 1274–1277

    Article  PubMed  CAS  Google Scholar 

  • Kastan M, Zhan Q, el-Deiry W, Carrier F, Jacks T, Walsh W, Plunkett B, Vogelstein B, Fornace A (1992) A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia- telangiectasia. Cell 71: 587–597

    Article  PubMed  CAS  Google Scholar 

  • Kastan MB, Onyekwere O, Sidransky D, Vogelstein B, Craig RW (1991) Participation of p53 protein in the cellular response to DNA damage. Cancer Res 51: 6304–6311

    PubMed  CAS  Google Scholar 

  • Kato J-Y, Matusushime H, Hiebert S, Ewen M, Sherr C (1993) Direct binding of cyclin D to the retinoblastoma gene product (PRb) and pRb phosphorylation by the cyclin D-dependent kinase CDK4. Genes Dev 7: 331–342

    Article  PubMed  CAS  Google Scholar 

  • Keyomarsi K, Pardee A (1993) Redundant cyclin overexpression and gene amplification in breast cancer cells. Proc Natl Acad Sci USA 90: 1112–1116

    Article  PubMed  CAS  Google Scholar 

  • King RW, Jackson PK, Kirschner MW (1994) Mitosis in transition. Cell 79: 563–570

    Article  PubMed  CAS  Google Scholar 

  • Krek W, Marks J, Schmitz N, Nigg E, Simanis V (1992) Vertebrate p34cdc2 phosphorylation site mutants: effects upon cell cycle progression in the fission yeast Schizosaccharomyces pombe. J Cell Sci 102: 43–53

    PubMed  CAS  Google Scholar 

  • Krek W, Nigg E (1991) Differential phosphorylation of vertebrate p34cdc2 kinase at the G1/S and G2/M transitions of the cell cycle: identification of major phosphorylation sites. EMBO J 10: 305–316

    PubMed  CAS  Google Scholar 

  • Kuerbitz S, Plunkett B, Walsh W, Kastan M (1992) Wild-type p53 is a cell cycle checkpoint determinant following irradiation. Proc Natl Acad Sci USA 89: 7491–7495

    Article  PubMed  CAS  Google Scholar 

  • Lane DP (1992) p53, guardian of the genome. Nature 358: 15–16

    Article  PubMed  CAS  Google Scholar 

  • Lane DP (1993) A death in the life of p53. Nature 362: 786

    Article  PubMed  CAS  Google Scholar 

  • Leach R, Elledge S, Sherr C, Willson J, Markowitz S, Kinzler K, Vogenstein B (1993) Amplification of cyclin genes in colorectal carcinomas. Cancer Res 53: 1986–1989

    PubMed  CAS  Google Scholar 

  • Lebwoh D, Muise-Helmericks R, Sepp-Lorenzino L, Serve S, Timaul M, Bol R, Borgen P, Rosen N (1994) A truncated cyclin D1 gene encodes a stable mRNA in a human breast cancer cell line. Oncogene 9: 1925–1929

    Google Scholar 

  • Li R, Waga S, Hannon G, Beach D, Stillman B (1994) Differential effects by the p21 inhibitor on PCNA- dependent DNA replication and repair. Nature 37: 534–537

    Article  Google Scholar 

  • Li Y, Nichols M, Shay J, Xiong Y (1994) Transcriptional repression of the D-type cyclin-dependent kinase inhibitor p16 by the retinoblastoma susceptibility gene product pRb. Cancer Res 54: 6078–6082

    PubMed  CAS  Google Scholar 

  • Livingstone LR, White A, Sprouse J, Livanos E, Jacks T, Tlsty TD (1992) Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53. Cell 70: 923–935

    Article  PubMed  CAS  Google Scholar 

  • Lock R (1992) Inhibition of p34 cdc2 kinase activation, tyrosine dephosphorylation, and mitotic progression in Chinese hamster ovary cells exposed to etoposide. Cancer Res 52: 1817–1822

    PubMed  CAS  Google Scholar 

  • Lorca T, Labbe J, Devault A, Fesquet D, Capony J, Cavadore J, Bouffant FL, Doree M (1992) Dephosphorylation of cdc2 on threonine 161 is required for cdc2 kinase inactivation and normal anaphase. EMBO J 11: 2381–2390

    PubMed  CAS  Google Scholar 

  • Lowe S, Schmitt E, Smith S, Osborne B, Jacks T (1993) P53 is required for. radiation-induced apoptosis in mouse thymocytes. Nature 362: 847–849

    Article  PubMed  CAS  Google Scholar 

  • Maity A, McKenna WG, Muschel RJ (1994) Posttranscriptional regulation of cyclin B1 mRNA through the cell cycle and after irradiation. EMBO J 14: 603–609

    Google Scholar 

  • Michieli P, Chedid M, Lin D, Pierce J, Mercer W, Givol D (1994) Induction of WAF1/CIP1 by a p53-independent pathway. Cancer Res 54: 3391–3395

    PubMed  CAS  Google Scholar 

  • Morgan D (1995) Principles of CDK regulation. Nature 374: 131

    Article  PubMed  CAS  Google Scholar 

  • Morgenbesser SD, Williams BO, Jacks T, Depinho RA (1994) p53 dependent apoptosis produced by rb deficiency in the developing mouse lens. Nature 371: 72–74

    Article  PubMed  CAS  Google Scholar 

  • Motokura T, Bloom T, Kim H, Juppner H, Ruderman J, Kronenberg H, Arnold A (1991) A novel cyclin encoded by a bell-linked candidate oncogene. Nature 350: 512–515

    Article  CAS  Google Scholar 

  • Muschel R, Zhang H, Iliakis G, McKenna W (1991) Cyclin B expression in HeLa cells during the G2 block induced by ionizing radiation. Cancer Res 51: 5113–5117

    PubMed  CAS  Google Scholar 

  • Muschel R, Zhang H, McKenna W (1993) Differential effect of ionizing radiation on the expression of cyclin A and cyclin B in Hela cells. Cancer Res 53: 1–8

    Google Scholar 

  • Muschel R, Bernhard E, Garza L, McKenna W, Koch C (1995) Induction of apoptosis at different oxygen tensions: evidence that oxygen radicals do not mediate apoptotic signalling. Cancer Res 55: 995–998

    PubMed  CAS  Google Scholar 

  • Musgrove E, Lee C, Buckley M, Sutherland R (1994) Cyclin D1 induction in breast cancer cells shortens G, and is sufficient for cells arrested in G, to complete the cell cycle. Proc Natl Acad Sci USA 91: 8022–8026

    Article  PubMed  CAS  Google Scholar 

  • Norbury C, Nurse P (1992) Animal cell cycles and their control. Annu Rev Biochem 61: 441–470

    Article  CAS  Google Scholar 

  • Nunez G, Seto M, Seremetis S, Ferrero D, Grignani F, Korsmeyer S, Favera RD (1989) Growth and tumor promoting effects of deregulated bcl2 in human B-lymphoblastoid cells. Proc Natl Acad Sci USA 86: 4589–4593

    Article  PubMed  CAS  Google Scholar 

  • O’Connor PM, Ferris DK, White GA, Pines J, Hunter T, Longo DL, Kohn KW (1992) Relationships between cdc2 kinase, DNA cross-linking, and cell cycle perturbations induced by nitrogen mustard. Cell Growth Differ 3: 43–52

    PubMed  Google Scholar 

  • O’Connor PM, Ferris DK, Pagano M, Draetta G, Pines J, Hunter T, Longo DL, Kohn KW (1993) G2 delay induced by nitrogen mustard in human cells affects cyclin A/cdk2 and cyclin B1/cdc2-kinase complexes differently. J Biol Chem 268: 8298–8308

    PubMed  Google Scholar 

  • O’Connor PM, Ferris DK, Hoffman I, Jackman J, Draetta G, Kohn KW (1994) Role of the cdc25C phosphatase in G2 arrest induced by nitrogen mustard in human lymphoma cells. Proc Natl Acad Sci USA 91: 9480–9484

    Article  PubMed  Google Scholar 

  • Ogawa S, Hirano N, Sato N, Takahashi T, Hangaishi A, Tanaka K, Kurokawa M, Tanaka T, Mitani K, Yazaki Y, Hirai H (1994) Homozygous loss of the cyclin-dependent kinase 4-inhibitor (P16) gene in human leukemias. Blood 84: 2431–2435

    PubMed  CAS  Google Scholar 

  • Okamoto A, Demetrick D, Spillare E, Hagiwara K, Hussain S, Bennett W, Forrester K, Gerwin B, Serrano M, Beach D, Harris C (1994) Mutations and altered expression of p16INK4 in human cancer. Proc Natl Acad Sci USA 91: 11045–11049

    Article  PubMed  CAS  Google Scholar 

  • Oren M (1992) The involvement of oncogenes and tumor suppressor genes in the control of apoptosis. Cancer Metastasis Rev 11: 141–148

    Article  PubMed  CAS  Google Scholar 

  • Osteen K, Rodgers W, Gaire M, Hargrove J, Gorstein F, Matrisian L (1994) Stromalepithelial interaction mediatesteroidal regulation of metalloproteinase expression in human endometrium. Proc Natl Acad Sci USA 91: 10129–10133

    Article  PubMed  CAS  Google Scholar 

  • Otterson G, Kratzke R, Coxon A, Kim Y, Kaye F (1994) Absence of p16ink4 protein is restricted to the subset of lung cancer lines that retains wildtype RB. Oncogene 9: 3375–3378

    PubMed  CAS  Google Scholar 

  • Palayoor S, Macklis R, Bump E, Coleman C (1995) Modulation of radiation-induced apoptosis and G(2) M block in murine T-lymphoma cells. Radiat Res 141: 235–243

    Article  PubMed  CAS  Google Scholar 

  • Pan HC, Griep AE (1994) Altered cell cycle regulation in the lens of HPV-16 E6 or E7 transgenic mice- implications for tumor-suppressor gene function in development. Genes Dev 8: 1285–1299

    Article  PubMed  CAS  Google Scholar 

  • Polyak K, Kato J-Y, Solomon M, Sherr C, Massague J, Roberts J, Koff A (1994a) p27Kip1- a cyclin-Cdk inhibitor, links transforming growth factor-p and contact inhibition to cell cycle arrest. Genes Dev 8: 9–22

    Article  PubMed  CAS  Google Scholar 

  • Polyak K, Lee M-H, Erdjument-Bromage H, Koff A, Roberts J, Tempst P, Massague J (1994b) Cloning of p27Klp1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell 78: 59–66

    Article  PubMed  CAS  Google Scholar 

  • Powell SN, Defrank JS, Connell P, Edgan M, Preffer F, Dombkowski D, Tang W, Friend S (1995) Differential sensitivity of p53- and p53+ cells to caffeine-induced radiosensitization and override of G (2) delay. Cancer Res 55: 1643–1648

    PubMed  CAS  Google Scholar 

  • Reed JC (1994) Mini-review: cellular mechanisms of disease series. J Cell Biol 124: 1–6

    Article  PubMed  CAS  Google Scholar 

  • Reed J, Cuddy M, Haldar S, Croce C, Nowell P, Makover D, Bradley K (1990) Bcl-2-mediated tumorigenicity of a human T-lymphoid cell line: synergy with myc and inhibition by bc12 antisense. Proc Natl Acad Sci USA 87: 3660–3664

    Article  PubMed  CAS  Google Scholar 

  • Resnitzky D, Gossen M, Bujard H, Reed S (1994) Acceleration of the G1/S phase transition by expression of cyclins D1 and E with an inducible system. Mol Cell Biol 14: 1669–1679

    PubMed  CAS  Google Scholar 

  • Russell KJ, Wiens LW, Demers GW, Galloway DA, Plon SE, Groudine M (1995) Abrogation of the G(2) checkpoint results in differential radiosensitization of G(1) checkpoint deficient and G(1) checkpoint- competent cells. Cancer Res 55: 1639–1642

    PubMed  CAS  Google Scholar 

  • Schmidt E, Ichimura K, Reifenberger G, Collins V (1994) CDKN2 (p16/MTS1) gene deletion of CDK4 amplification occurs in the majority of glioblastomas. Cancer Res 54: 6321–6324

    PubMed  CAS  Google Scholar 

  • Serrano M, Hannon G Beach D (1993) A new regulatory motif in cell cycle control causing specific inhibition of cyclin D/CDK4. Nature 366: 704

    Article  PubMed  CAS  Google Scholar 

  • Sheikh M, Li X-S, Chen J-C, Shao Z-M, Ordonez J, Fontana J (1994) Mechanisms of regulation of WAF1/ Cip1 gene expression in human breast carcinoma: role of p53-dependent and independent signal transduction pathways. Oncogene 9: 3407–3415

    PubMed  CAS  Google Scholar 

  • Sherr C (1993) Mammalian G1, cyclins. Cell 73: 1059–1065

    Article  CAS  Google Scholar 

  • Sherr C (1994) G1 phase progression: cycling on cue. Cell 79: 551–555

    Article  PubMed  CAS  Google Scholar 

  • Shibuya H, Yoneyama M, Ninomiya-Tsuji J, Matsumoto K, Taniguchi T(1992) IL-2 and EGF receptors stimulate the homatopoietic cell cycle via different signaling pathways: demonstration of a novel role for c-myc. Cell 70: 57–67

    Article  PubMed  CAS  Google Scholar 

  • Shirodkar S, Ewen M, DeCapro J, Morgan J, Livingston D, Chittenden T (1992) The transcription factor E2F interacts with the retinoblastoma product and a p107-cyclin A complex in a cell cycle-regulated manner. Cell 68: 157–166

    Article  CAS  Google Scholar 

  • Sicinski P, Donaher JL, Parker SB, Li TS, Gardner H, Haslam SZ, Bronson RT, Elledge SJ, Weinberg RA (1995) Cyclin D1 provides a link between development and oncogenesis in the retina and breast. Cell 82: 621–630

    Article  PubMed  CAS  Google Scholar 

  • Slingerland J, Hengst L, Pan G-H, Alexander D, Stampfer M, Reed S (1994) A novel inhibitor of cyclin- cdk activity detected in transforming growth factor (3-arrested epithelial cells. Mol Cell Biol 14: 3683–3694

    PubMed  CAS  Google Scholar 

  • Smith M, Chen I, Zhan Q, Bae I, Chen C, Gilmer T, Kastan M, OConnor P, Fornace A (1994) Interaction of the p53-regulated protein GADD45 with proliferating cell nuclear antigen. Science 266: 1376–1380

    Article  PubMed  CAS  Google Scholar 

  • Stewart N, Hicks GG, Paraskevas F, Mowat M (1995) Evidence for a second cell cycle block at G2/M by p53. Oncogene 10: 109–115

    PubMed  CAS  Google Scholar 

  • Strasser A, Harris A, Bath M, Cory S (1990) Novel primitive lymphoid tumours induced in transgenic mice by cooperation between myc and bcl-2. Nature 348: 331–333

    Article  PubMed  CAS  Google Scholar 

  • Telford WG, King LE, Fraker PJ (1991) Evaluation of glucocorticoid-induced DNA fragmentation in mouse thymocytes by flow cytometry. Cell Prolif 24: 447–459

    Article  PubMed  CAS  Google Scholar 

  • Toyoshima H, Hunter T (1994) p27, a novel inhibitor of G1 cyclin-cdk protein kinase activity, is related to p21. Cell 78: 67–74

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Chenivesse X, Henglein B, Brechot C (1990) Hepatitis B virus integration in a cyclin A gene in a hepatocellular carcinoma. Nature 343: 555–557

    Article  PubMed  CAS  Google Scholar 

  • Weaverfeldhaus J, Guirs N, Neuhausen S, Lepaslier D, Stockert E, Skolnick M, Kamb A (1994) Localization of a putative tumor-suppressor gene by using homozysgous deletions in melanomas. Proc Natl Acad Sci USA 1994: 7563–7567

    Article  Google Scholar 

  • Weinert TA, Hartwell LH (1988) The RAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae. Science 241: 317–322

    Article  PubMed  CAS  Google Scholar 

  • White E (1993) Regulation of apoptosis by the transforming genes of the DNA tumor virus adenovirus. PSEBM 204: 30–39

    CAS  Google Scholar 

  • White E (1994) P53, guardian of rb. Nature 371: 21–22

    Article  PubMed  CAS  Google Scholar 

  • Xiong Y, Zhang H, Beach D (1993) Subunit rearrangement of the cyclin-dependent kinases is associated with cellular transformation. Genes Dev 7: 1572–1583

    Article  PubMed  CAS  Google Scholar 

  • Xu M, Sheppard K-A, Peng C-Y, Yee A, Piwnica-Worms H (1994) Cyclin A/CDK2binds directly to E2F-1 and inhibits the dna N-binding activity of E2F-1/DP-1 by phosphorylation. Mol Cell Biol 14: 8420–8431

    PubMed  CAS  Google Scholar 

  • Yamada T, Ohyama H (1988) Radiation-induced interphase death of rat thymocytes is internally programmed (apoptosis). Int J Radiat Biol 53: 65–75

    Article  CAS  Google Scholar 

  • Zeigler A, Jonason A, Leffell D, Simon J, Sharma H, Kimmelman J, Remington L, Jacks T, Brash D (1994) Sunburn and p53 in the onset of skin cancer. Nature 372: 773–776

    Article  Google Scholar 

  • Zeigler A, Leffell D, Kunala S, Sharma H, Gailani M, Simon J, Halgerin A, Baden H, Shapiro P, Bale A, Brash D (1993) Mutation hotspots due to sunlight in the p53 gene of nonmelanoma skin cancers. Proc Natl Acad Sci USA 90: 4216–4220

    Article  Google Scholar 

  • Zhang H, Hannon G, Beach D (1994) p21-containing cyclin kinases exist in both active and inactive states. Genes Dev 8: 1750–1758

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Muschel, R.J., McKenna, W.G. (1996). Alterations in Cell Cycle Control During Tumor Progression: Effects on Apoptosis and the Response to Therapeutic Agents. In: Günthert, U., Birchmeier, W. (eds) Attempts to Understand Metastasis Formation II. Current Topics in Microbiology and Immunology, vol 213/2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61109-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61109-4_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64698-0

  • Online ISBN: 978-3-642-61109-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics