Adhesion Molecules and Tumor Cell-Vasculature Interactions: Modulation by Bioactive Lipid Molecules

  • D. G. Tang
  • K. V. Honn
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 213/2)


Adhesive interactions between disseminating tumor cells and the microvasculature (endothelial cells, leukocytes, platelets, extracellular matrix components, etc.) represent an essential molecular event in the metastatic process. As in the case of other metastatic determinants such as angiogenesis, proteolysis, motility and invasion, the adhesive interactions also are mediated by distinct groups of molecules, termed adhesion receptors, which are represented by four major families, i.e., integrins, the immunoglobulin supergene family, cadherins, and selectins. Many other molecules such as cell surface carbohydrates and lectins, proteoglycans, and some growth factors also possess adhesive functions under special circumstances. The relationship between adhesion and metastasis is simply exemplified by an in vitro adhesion assay utilizing tumor cells of differential metastatic potential. As illustrated in Fig. 1, B16 F10 murine melanoma cells (a high metastatic subline) demonstrated a more rapid and quantitatively greater adhesion to microvascular endothelium that F1 cells (a low metastatic subline), thus suggesting a positive correlation between the metastatic ability and adhesive ability of tumor cells. The literature is replete with examples demonstrating a cause-and-effect relationship between adhesion molecules and tumor cell metastasis. Quite convincing data have been presented for three adhesion molecules, i.e., α5β1 integrin, E-cadherin and C-CAM, which possess metastasis-suppresive functions.


Tumor Cell Adhesion B16a Cell Focal Adhesion Plaque Immunoglobulin Supergene Family Endothelial Cell Retraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albelda SM, Mueller WA, Buck CA, Newman PJ (1991) Molecular and cellular properties of PECAM-1(endoCAM/CD31): a novel vascular cell-cell adhesion molecule. J Cell Biol 114: 105–118CrossRefGoogle Scholar
  2. Augustin HG, Kozian DH, Johnson RC (1994) Differentiation of endothelial cells: analysis of the constitutive and activated endothelial cell phenotypes. Bioessays 16: 901–906PubMedCrossRefGoogle Scholar
  3. Bartfeld NS, Pasquale EB, Geltosky JE, Languino LR (1993) The αvβ3 integrin associates with a 190kDa protein that is phosphorylated on tyrosine in response to platelet-derived growth factor. J Biol Chem 268: 17270–17276PubMedGoogle Scholar
  4. Buchanan MR, Bertomeu MC, Haas TA, Orr FW, Eltringham-Smith L (1993) Localization of 13-HODE and the vitronectin receptor in human endothelial cells and endothelial cell/platelet interactions in vitro. Blood 81: 3303–3312PubMedGoogle Scholar
  5. Chen YQ, Gao X, Timar J, Tang DG, Grossi IM, Chelladurai M, Kunicki TJ, Fligiel SEG, Taylor JD, Honn KV (1992) Identification of the αllbβ3 integrin in murine tumor cells. J Biol Chem 267: 17314–17320PubMedGoogle Scholar
  6. Chen YQ, Duniec ZM, Liu B, Hagmann W, Gao X, Shimoji K, Marnett LJ, Johnson CR, Honn KV (1994) Endogenous 12(S)-HETE production by tumor cell and its role in metastasis. Cancer Res 54: 1574–1579PubMedGoogle Scholar
  7. Conforti G, Zanetti A, Pasquali-Ronchetti I, Quaglino D Jr, Neyroz P, Marchisio PC, Dejana E (1990) Modulation of vitronectin receptor binding by membrane lipid composition. J Biol Chem 265: 4011–4019PubMedGoogle Scholar
  8. Defilippi P, Truffa G, Stefanuto G, Altruda F, Silengo L, Tarone G (1991) Tumor necrosis factor α and interferon γ modulate the expression of vitronectin receptor (integrin β3) in human endothelial cells. J Biol Chem 266: 7638–7645PubMedGoogle Scholar
  9. De Nichilo MO, Burns GF (1993) Granulocyte-macrophage and macrophage colony-stimulating factors differentially regulate αv integrin expression on cultured human macrophages. Proc Natl Acad Sci USA 90: 2517–2521PubMedCrossRefGoogle Scholar
  10. Fearon ER, Cho KR, Nigro JM, Kern SE, Simons JW, Ruppert JM, Hamilton SR, Preisinger AC, Thomas G, Kinzler KW, Vogelstein B (1990) Identification of chromosome 18q gene that is altered in colorectal cancer. Science 247: 49–56PubMedCrossRefGoogle Scholar
  11. Feldman LE, Shin KC, Natale RB, Tod R (1991) β1 integrin expression on human small cell lung cancers. Cancer Res 51: 1065–1070PubMedGoogle Scholar
  12. Frixen UH, Behrens J, Saches M, Eberle G, Voss B, Warda A, Lochner D, Birchmeier W (1991) E Cadherin-mediated cell-cell adhesion prevents invasiveness of human carcinoma cells. J Cell Biol 113: 173–185PubMedCrossRefGoogle Scholar
  13. Gehisen KR, Davis GE, Sriramarao P (1992) Integrin expression in human melanoma cells with differing invasive and metastatic properties. Clin Exp Metastasis 10: 111–120CrossRefGoogle Scholar
  14. Giancotti FG, Ruoslahti E (1990) Elevated levels of the α5β1 fibronectin receptor suppress the transformed phenotype of Chinese hamster ovary cells. Cell 60: 849–859PubMedCrossRefGoogle Scholar
  15. Grossi IM, Hatfield JS, Fitzgerald LA, Newcombe M, Taylor JD, Honn KV (1988) Role of tumor cell glycoproteins immunologically related to glycoproteins lb and llb/llla in tumor cell-platelet and tumor cell-matrix proteins. FASEB J 2: 2385–2395PubMedGoogle Scholar
  16. Grossi IM, Fitzgerald LA, Umbarger LA, Nelson KK, Diglio CA, Taylor JD, Honn KV (1989) Bidirectional control of membrane expression and/or activation of the tumor cell IRGpllb/llla receptor and tumor cell adhesion by lipoxygenase products of arachidonic and linoleic acid. Cancer Res 49: 1029–1037PubMedGoogle Scholar
  17. Günthert U, Hofmann M, Rudy W, Reber S, Zoller M, Hausmann I, Matzkus A, Wenzel A, Ponta H, Herrlich P (1991) A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cell 65: 13–24PubMedCrossRefGoogle Scholar
  18. Haynes BF, Liao HX, Patton KL (1991) The transmembrane hyaluronate receptor (CD44): multiple function, multiple forms. Cancer Cells 3: 347–350PubMedGoogle Scholar
  19. Hermanowski-Vosatka A, VanStrip JAG, Swiggard WJ, Wright SD (1992) Integrin modulating factor-1, a lipid that alters the function of leukocyte integrins. Cell 68: 341–352PubMedCrossRefGoogle Scholar
  20. Hofmann M, Rudy W, Zoller M, Tolg C, Ponta H, Herrlich P, Günthert U (1991) CD44 splice variants confer metastatic behavior in rats: homologous sequences are expressed in human tumor cell lines. Cancer Res 51: 5292–5297.PubMedGoogle Scholar
  21. Honn KV, Tang DG (1992) Adhesion molecules and cancer cell interaction with endothelium and subendothelial matrix. Cancer Metastasis Rev 11: 353–375PubMedCrossRefGoogle Scholar
  22. Honn KV, Grossi IM, Diglio CA, Wojtukiewicz M, Taylor JD (1989) Enhanced tumor cell adhesion to the subendothelial matrix resulting from 12(S)-HETE-induced endothelial cell retraction. FASEB J 3: 2285–2293PubMedGoogle Scholar
  23. Honn KV, Nelson KK, Renaud C, Baza R, Diglio CA, Timar J (1992) Fatty acid modulation of tumor cell adhesion to microvessel endothelium and experimental metastasis. Prostaglandins 44: 413–429PubMedCrossRefGoogle Scholar
  24. Honn KV, Tang DG, Duniec ZM, Grossi IM, Timar J, Renaud C, Leithauser M, Blair I, Diglio CA, Kimler VA Taylor JD, Marnett LJ (1994a) Tumor cell-derived 12(S)-hydroxyeicosatetraenoic acid induces microvascular endothelial cell retraction. Cancer Res 54: 565–574PubMedGoogle Scholar
  25. Honn KV, Tang DG, Gao X, Butovich IA, Liu B, Timar J, Hagmann W (1994) 12-Lipoxygenases and 12(S)-HETE: role in cancer metastasis. Cancer Metastasis Rev 13: 365–396PubMedCrossRefGoogle Scholar
  26. Honn KV, Tang DG, Grossi IM, Renaud C, Diglio CA (1994) Enhanced endothelial cell retraction mediated by 12(S)-HETE: a proposed mechanism for the role of platelets in tumor cell metastasis. Exp Cell Res 210: 1–9PubMedCrossRefGoogle Scholar
  27. Hsieh JT, Luo W, Song W, Wang Y, Kleinerman DI, Van NT, Lin SH (1995) Tumor suppressor role of an androgen-regulated epithelial cell adhesion molecule (C-CAM) in prostate carcinoma cell revealed by sense and antisense approaches. Cancer Res 55: 190–197PubMedGoogle Scholar
  28. Ignotz RA, Heino J, Massague J (1989) Regulation of cell adhesion receptors by transforming growth factor-β. Regulation of vitronectin receptor and LFA-1. J Biol Chem 264: 389–392PubMedGoogle Scholar
  29. Johnson JP (1991) Cell adhesion molecules of the immunoglobulin supergene family and their role in malignant transformation and progression to metastatic disease. Cancer Metastasis Rev 10: 11–22PubMedCrossRefGoogle Scholar
  30. Johnson JP, Stade BG, Holmann B, Schwable W, Riethmuller G (1989) De novo expression of intercellular adhesion molecule-1 in melanoma correlates with increased risk of metastasis. Proc Natl Acad Sci USA 86: 641–644PubMedCrossRefGoogle Scholar
  31. Jones CL, Honn KV (1992) Enhanced membrane expression of adhesion αllbβ3 in Lewis lung carcinoma cells by epoxyeicosatetraenoic acids. In: Nigam S, Honn KV, Marnett LJ, Walden T (eds) Eicosanoids and other bioactive lipids in cancer, inflammation and radiation injury. Kluwer Academic, Boston, pp 671–678Google Scholar
  32. Klein S, Giancotti FG, Presta M, Albelda SM, Buck CA, Rifkin DB (1993) Basic fibroblast growth factor modulates integrin expression in microvascular endothelial cells. Mol Biol Cell 4: 973–982PubMedGoogle Scholar
  33. Kleinerman DI, Troncoso P, Lin SH, Pisters LL, Sherwood ER, Brooks T, von Eschenbach AC, Hsieh JT (1995) Consistent expression of an epithelial cell adhesion molecule (C-CAM) during human prostate development and loss of expression in prostate cancer: implication as a tumor suppressor. Cancer Res 55: 1215–1220PubMedGoogle Scholar
  34. Lafrenie RM, Podor TJ, Buchanan MR, Orr FW (1992) Up-regulated biosynthesis and expression of endothelial cell vitronectin receptor enhances cancer cell adhesion. Cancer Res 52: 2202–2208PubMedGoogle Scholar
  35. Liu B, Timar J, Howlett J, Diglio CA, Honn KV (1991) Lipoxygenase metabolites of arachidonic and linoleic acids modulate the adhesion of tumor cells to endothelium via regulation of protein kinase C. Cell Regul 2: 1045–1055PubMedGoogle Scholar
  36. Liu B, Maher RJ, Hannun Y, Porter AT, Honn KV (1994a) 12(S)-HETE enhancement of prostate tumor cell invasion: selective role of PKCα. J Natl Cancer Inst 86: 1145–1151PubMedCrossRefGoogle Scholar
  37. Liu B, Marnett LJ, Chaudhary A, Ji C, Blair IA, Johnson CR, Diglio CA, Honn KV (1994b) Biosynthesis of 12(S)-hydroxyeicosatetraenoic acid by B16 amelanotic melanoma cells is a determinant of their metastatic potential. Lab Invest 70: 314–323PubMedGoogle Scholar
  38. Liu B, Khan WA, Hannun YA, Timar J, Taylor JD, Lundy S, Butovich I, Honn KV (1995) 12(S)-HETE and 13(S)-HODE regulation of protein kinase C alpha in melanoma cells: role of receptor mediated hydrolysis of inositol phospholipids. Proc Natl Acad Sci USA 92: 9323–9327PubMedCrossRefGoogle Scholar
  39. Lorant DE, Patel KD, Mclntyre TM, McEver RP, Prescott SM, Zimmerman GA (1991) Coexpression of GMP-140 and PAF by endothelium stimulated by histamine or thrombin: a juxtacrine system for adhesion and activation of neutrophils. J Cell Biol 115: 223–234PubMedCrossRefGoogle Scholar
  40. Medhora MM, Teitelbaum S, Chappel J, Alvarez J, Mimura H, Ross F, Hruska K (1993). 1α, 25-dihydroxyvitamin D3 up-regulates expression of the osteoclast integrin αvβ3. J Biol Chem 268: 1456–1461PubMedGoogle Scholar
  41. Milam SB, Magnuson VL, Steffensen B, Chen DL, Klebe RJ (1991) IL-1β and prostaglandins regulate integrin mRNA expression. J Cell Physiol 149: 173–183PubMedCrossRefGoogle Scholar
  42. Newman PJ, Bernt MC, Gorski J, White GC, Lyman S, Paddock C, Muller WA (1990) PECAM-1 (CD31) cloning and relation to adhesion molecules of the immunoglobulin gene superfamily. Science 247: 1219–1222PubMedCrossRefGoogle Scholar
  43. Nickloff BJ (1993) PECAM-1 (CD31) is expressed on proliferating endothelial cells, stromal spindle-shaped cells, and dermal dendrocytes in Karposi’s sarcoma. Arch Dermatol 129: 250–251.CrossRefGoogle Scholar
  44. Perrotti D, Cimino L, Falcioni R, Tibursi G, Gentileschi MP, Sacchi A (1990) Metastatic phenotype: growth factor dependence and integrin expression. Anticancer Res 10: 587–598Google Scholar
  45. Roosien FF, DeRijik D, Birkker A, Roos E (1989) Involvement of LFA-1 in lymphoma invasion and metastasis demonstrated with LFA-1 deficient mutants. J Cell Biol 108: 1979–1985CrossRefGoogle Scholar
  46. Rossino P, Defilippi R, Silengo L, Tarone G (1991) Up-regulation of the integrin α1/β1 in human neuroblastoma cells differentiated by retinoic acid: correlation with increased neurite outgrowth reponses to laminin. Cell Regul 2: 1021–1033PubMedGoogle Scholar
  47. Satoh K, Narumi K, Isemura M, SakaiT, Abe T, Matsushima K, Okuda K, Motomiya M (1992) Increased expression of the 67kd laminin receptor gene in human small cell lung cancer. Biochem Biophys Res Commun 182: 746–752PubMedCrossRefGoogle Scholar
  48. Schipper JH, Frixen UH, Behrens J, Unger A, Jahnke K, Birchmeier W (1991) E-cadherin expression in squamous cell carcinoma of head and neck: inverse correlation with tumor dedifferentiation and lymph node metastasis. Cancer Res 51: 6328–6337PubMedGoogle Scholar
  49. Schreiber C, Bauer J, Margolis M, Juliano RL (1991a) Expression and role of integrins in adhesion of human colonic carcinoma cells to extracellular matrix components. Clin Exp Metastasis 2: 163–178CrossRefGoogle Scholar
  50. Schreiber C, Fisher M, Hussein S, Juliano RL (1991b) Increased tumorigenicity of fibronectin receptor deficient Chinese hamster ovary cell variants. Cancer Res 51: 1738–1740Google Scholar
  51. Schwartz MA, Brown EJ, Fazeli B (1993) A 50-kDa integrin-associated protein is required for integrin-regulated calcium entry in endothelial cells. J Biol Chem 268: 19931–19934PubMedGoogle Scholar
  52. Setty BNY, Graeber JE, Stuart MJ (1987) The mitogenic effect of 15- and 12- hydroxyeicosatetraenoic acid on endothelial cells may be mediated via diacylglycerol kinase inhibition. J Biol Chem 262: 17613–17622PubMedGoogle Scholar
  53. Smith JW, Piotrowicz RS, Mathis D (1994) A mechanism for divalent cation regulation of β3-integrins. J Biol Chem 269: 960–967PubMedGoogle Scholar
  54. Soler AP, Johnson KR, Wheelock MJ, Knudsen KA (1993) Rhabdomyosarcoma-derived cell lines exhibit abberant expression of the cell-cell adhesion molecules N-CAM, N-cadherin, and cadherin-associated proteins. Exp Cell Res 208: 84–93PubMedCrossRefGoogle Scholar
  55. Sommers CL, Thompson EW, Torri JA, Kemler R, Gelmann EP, Byers SW (1991) Cell adhesion molecule uvomorulin expression in human breast cancer cell lines: relationship to morphology and invasive capacities. Cell Growth Differ 2: 365–372PubMedGoogle Scholar
  56. Spector AA, Gordon JA, Moore SA (1988) Hydroxyeicosatetraenoic acids (HETEs). Prog Lipid Res 27: 271–323PubMedCrossRefGoogle Scholar
  57. Stallmach A, Von Lampe BV, Matthes H, Bornhoft G, Riecken EO (1992) Diminished expression of integrin adhesion molecules on human colonic epithelial cells during the benign to malignant tumor transformation. Gut 33: 342–346PubMedCrossRefGoogle Scholar
  58. Tang DG, Honn KV (1994) 12-Lipoxygenase, 12(S)-HETE, and cancer metastasis. Ann NY Acad Sci 722: 199–215CrossRefGoogle Scholar
  59. Tang DG, Honn KV (1995) Adhesion molecules and tumor metastasis. Invasion Metastasis 14: 109–122Google Scholar
  60. Tang DG, Chen Y, Diglio CA, Honn KV (1993a) PKC-dependent effects of 12(S)-HETE on endothelial cell vitronectin and fibronectin receptor. J Cell Biol 121: 689–704PubMedCrossRefGoogle Scholar
  61. Tang DG, Diglio CA, Honn KV (1993b) 12(S)-HETE-induced microvascular endothelial cell retraction results from PKC-dependent rearrangement of cytoskeletal elements and αvβ3 integrin. Prostaglandins 45: 249–268PubMedCrossRefGoogle Scholar
  62. Tang DG, Grossi IM, Diglio CA, Honn KV (1993c) 12(S)-HETE promotes tumor cell adhesion by increasing surface expression of αvβ3 integrins on endothelial cells. Int J Cancer 54: 102–111PubMedCrossRefGoogle Scholar
  63. Tang DG, Onoda JM, Grossi IM, Nelson KK, Umbarger L, Honn KV (1993d) Phenotypic properties of tumor cells in culture: αllbβ integrin expression, tumor cell induced platelet aggregation, and tumor cell adhesion to endothelium as important parameters of metastatic potential. Int J Cancer 54: 338–347PubMedCrossRefGoogle Scholar
  64. Tang DG, Timar J, Grossi IM, Renaud C, Kimler V, Diglio CA, Taylor JD, Honn KV (1993e) The lipoxygenase metabolite, 12(S)-HETE, induces a protein kinase C dependent cytoskeletal rearrangement and retraction of microvascular endothelial cell. Exp Cell Res 207: 361–375PubMedCrossRefGoogle Scholar
  65. Tang DG, Chen Y, Newman PJ, Shi L, Gao X, Diglio CA, Honn KV (1993f) Identification of PECAM-1 in solid tumor cells and its potential involvement in tumor cell adhesion to endothelium. J Biol Chem 268: 22883–22894PubMedGoogle Scholar
  66. Tang DG, Diglio CA, Honn KV (1994) Activation of microvascular endothelium by 12(S)-HETE leads to enhanced tumor cell adhesion via upregulation of surface expression of αvβ3 integrin: a post-transcriptional, PKC- and cytoskeleton-dependent process. Cancer Res 54: 1119–1129PubMedGoogle Scholar
  67. Tang DG, Diglio CA, Bazaz R, Honn KV (1995a) Transcriptional activation of integrin αv in microvascular endothelial cells by PKC activator 12(S)-HETE. J Cell Sci 108: 2629–2644PubMedGoogle Scholar
  68. Tang DG, Tarrien M, Dobrzyski P, Honn KV (1995b) Melanoma cell spreading on fibronectin induced by 12(S)-HETE involves both PKC- and protein tyrosine kinase-dependent focal adhesion formation and tyrosine phosphorylation of focal adhesion kinase (pp125FAK) J Cell Physiol 165: 291–306PubMedCrossRefGoogle Scholar
  69. Timar J, Chen Y, Liu B, Bazaz R, Taylor JD, Honn KV (1992) The lipoxygenase metabolite 12(S)-HETE promotes αllbβ3 integrin-dependent tumor cell spreading on fibronectin. Int J Cancer 52: 594–603PubMedCrossRefGoogle Scholar
  70. Timar J, Tang DG, Bazaz R, Rong X, Kimler V, Taylor JD, Honn KV (1993) 12(S)-HETE induces the rearrangement of tumor cell cytoskeleton by PKC-dependent mechanism. Cell Motil Cytoskel 26: 49–65CrossRefGoogle Scholar
  71. Timar J, Bazaz R, Kimler V, Haddad M, Tang DG, Robertson D, Taylor JD, Honn KV (1995) Immunological characterization and effects of 12(S)-HETE on a dynamic intracellular pool of the αllbβ3-integrin in melanoma cells. J Cell Sci 108: 2175–2186PubMedGoogle Scholar
  72. Umbas R, Isaacs WB, Bringuier PP, Schaafsma EHE, Karthaus HFM, Oosterhof GON, Debruyne FMJ, Schalken JA (1994) Decreased E-cadherin expression is associated with poor prognosis in patients with prostate cancer. Cancer Res 54: 3929–3933PubMedGoogle Scholar
  73. Varner JA, Fisher MH, Juliano RL (1992) Ectopic expression of integrin α5β1 suppresses in vitro growth and tumorigenicity of human colon carcinoma cells. Mol Biol Cell 3: 232aGoogle Scholar
  74. Vleminckx K, Vakaek L, Mareel M, Fiers W, Van Roy F (1991) Genetic manipulation of E-cadherin expression reveals an invasion suppressor role. Cell 66: 107–119PubMedCrossRefGoogle Scholar
  75. Zimmerman GA, Mclntyre TM, Mehra M, Prescott SM (1990) Endothelial cell-associated platelet factor: a novel mechanism for signaling intercellular adhesion. J Cell Biol 110: 529–540PubMedCrossRefGoogle Scholar
  76. Zocchi MR, Vidal M, Poggi A (1993) Involvement of CD56/N-CAM molecule in the adhesion of human solid tumor cell lines to endothelial cells. Exp Cell Res 204: 130–135PubMedCrossRefGoogle Scholar
  77. Zutter MM, Mazoujian G, Santoro SA (1990) Decreased expression of integrin adhesive protein receptors in adenocarcinoma of the breast. Am J Pathol 137: 863–870PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • D. G. Tang
    • 1
  • K. V. Honn
    • 2
    • 3
  1. 1.Department of Radiation OncologyWayne State UniversityDetroitUSA
  2. 2.Departments of Radiation Oncology, Pathology, and ChemistryWayne State UniversityDetroitUSA
  3. 3.Gershenson Radiation Oncology CenterHarper HospitalDetroitUSA

Personalised recommendations