Skip to main content

Role of Tiam 1 in Rac-Mediated Signal Transduction Pathways

  • Chapter
Attempts to Understand Metastasis Formation II

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 213/2))

Abstract

Metastasis is a multistep process that requires the complex interplay of a number of gene products. Many tumour cell properties have been correlated with metastatic capacity, but direct evidence for a role of specific genes in metastasis is scarce. Products of oncogenes, such as Ras, can confer metastatic capacity (see Collard et al. 1988), as can specific splice variants of CD44, of which the expression correlates with metastasis in model systems and certain human tumours (Günthert et al. 1991; Wielenga et al. 1993). In contrast, other gene products such as Nm23, which shows homology to nucleoside diphosphate kinases, can supress metastasis (Leone et al. 1991), and downmodulation of Nm23 in mammary carcinomas has been associated with poor prognosis (Bevilacqua et al. 1989). Proteins involved in invasion also influence metastasis, as has been shown for proteases and their inhibitors (Liotta et al. 1991) and for adhesion molecules that play a role in cell-cell and cell-matrix interactions, e.g. E-cadherin (Behrens et al. 1990; Vleminckx et al. 1991) and certain integrins (Roosein et al. 1989; Chan et al. 1991). In order to identify genes specifically involved in the acquisition of the invasive and metastatic phenotype of tumorigenic cells, we have used proviral tagging in combination with in vitro selection for invasive T lymphoma cells. These studies have led to the identification of the Tiam 1 gene, which encodes a protein that regulates the activation of Racmediated signalling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arcaro A, Wymann MP (1993) Worthmannin is a potent phosphatidylinositol 3-kinase inhibitor: the role of phosphatidylinositol 3, 4, 5-triphosphate in neutrophil responses. Biochem J 296: 297–301

    PubMed  CAS  Google Scholar 

  • Avraham H, Weinberg RA (1989) Characterization and expression of the human rho 12 gene product. Mol Cell Biol 9: 2058–2066

    PubMed  CAS  Google Scholar 

  • Behrens J, Mareel MM, Van Roy FM, Birchmeier W (1990) Dissecting tumor cell invasion: epithelial cells acquire invasive properties after loss of Uvomorulin-mediated cell-cell adhesion. J Cell Biol 108: 2435–2447

    Article  Google Scholar 

  • Bevilacqua G, Sobel ME, Liotta LA, Steeg PS (1989) Association of low nm23 RNA levels in human primary infiltrating ductal breast carcinomas with lymph node involvement and other histopathological indicators of high metastatic potential. Cancer Res 49: 5185–5190

    PubMed  CAS  Google Scholar 

  • Boguski MS, McCormick F (1993) Proteins regulating Ras and its relatives. Nature 366: 643–654

    Article  PubMed  CAS  Google Scholar 

  • Bourne HR, Sanders DA, McCormick F (1990) The GTPase superfamily: a conserved switch for diverse cell functions. Nature 348: 125–132

    Article  PubMed  CAS  Google Scholar 

  • Bourne HR, Sanders DA, McCormick F (1991) The GTPase superfamily: conserved structure and molecular mechanism. Nature 349: 117–127

    Article  PubMed  CAS  Google Scholar 

  • Buday L, Downward J (1993) Epidermal growth factor regulates p21(ras) through the formation of a complex of receptor, Grb2 adapter protein, and Sos nucleotide exchange factor. Cell 73: 611–620

    Article  PubMed  CAS  Google Scholar 

  • Chan BMC, Matsuura N, Takada Y, Zetter BR, Hemler ME (1991) In vitro and in vivo consequences of VLA-2 expression on rhabdomyosarcoma cells. Science 251: 1600–1602

    Article  PubMed  CAS  Google Scholar 

  • Chardin P, Boquet P, Madaule P, Popoff MR, Rubin EJ, Gill DM (1989) The mammalian G protein rho C is ADP-ribosylated by Clostridium botulinum exoenzyme C3 and affects actin microfilaments in vero cells. EMBO J 8: 1087–1092

    PubMed  CAS  Google Scholar 

  • Chong LD, Traynorkaplan A, Bokoch GM, Schwartz MA (1994) The small GTP-binding protein Rho regulates a phosphatidylinositol 4-phosphate 5-kinase in mammalian cells. Cell 79: 507–513

    Article  PubMed  CAS  Google Scholar 

  • Collard JG, Schijven JF, Roos E (1987a) Invasive and metastatic potential induced by ras-transfection into mouse BW5147 T lymphoma cells. Cancer Res 47: 754–759

    PubMed  CAS  Google Scholar 

  • Collard JG, Van de Poll M, Scheffer A, Roos E, Hopman AHM, Geurts van Kessel AHM, Van Dongen JJM (1987b) Location of genes involved in invasion and metastasis on human chromosome 7. Cancer Res 47: 6666–6670

    PubMed  CAS  Google Scholar 

  • Collard JG, Roos E, La Rivière G, Habets GGM (1988) Genetic analysis of invasion and metastasis. Cancer Surv 7: 692–710

    Google Scholar 

  • Collard JG, Habets GGM, Van der Kammen R, Scholtes E (1989) Genetic basis of T lymphoma invasion. Invasion Metastasis 9: 379–390

    PubMed  CAS  Google Scholar 

  • Cook S, McCormick F (1994) Signal transduction-Ras blooms on sterile ground. Nature 369: 361–362

    Article  PubMed  CAS  Google Scholar 

  • Downward J (1992) Signal transduction. Rae and Rho in tune. Nature 359: 273–274

    Article  PubMed  CAS  Google Scholar 

  • Egan SE, Giddings BW, Brooks MW, Buday L, Sizeland AM (1993) Association of Sos Ras exchange protein with Grb2 is implicated in tyrosine kinase signal transduction and transformation. Nature 363: 45–51

    Article  PubMed  CAS  Google Scholar 

  • Eva A, Vecchio G, Rao CD, Tronick SR, Aaronson SA (1988) The predicted DBL oncogene product defines a distinct class of transforming proteins. Proc Natl Acad Sci USA 85: 2061–2065

    Article  PubMed  CAS  Google Scholar 

  • Fry MJ, Waterfield MD (1993) Structure and function of phosphatidylinositol 3-kinase: a potential second messenger system involved in growth control. Philos Trans R Soc Lond Biol 340: 337–344

    Article  PubMed  CAS  Google Scholar 

  • Fukami K, Furuhashi K, Inagaki M, Endo T, Hatano S, Takenawa T (1992) Requirement of phosphatidylinositol 4, 5-bisphosphate for alpha-actinin function. Nature 359: 150–152

    Article  PubMed  CAS  Google Scholar 

  • Gale NW, Kaplan S, Lowenstein EJ, Schlessinger J, Barsagi D (1993) Grb2 Mediates the EGF-dependent activation of guanine nucleotide Exchange on Ras. Nature 363: 88–92

    Article  PubMed  CAS  Google Scholar 

  • Gibson TJ, Hyvonen M, Birney E, Musacchio A, Saraste M (1994) PH domain-the first anniversary. Trends Biochem Sci 19: 349–353

    Article  PubMed  CAS  Google Scholar 

  • Günthert U, Hofmann M, Rudy W, Reber S, Zöller M, Haussman I, Matzku S, Wenzel A, Ponta H, Herrlich P (1991) A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cell 65: 13–24

    Article  PubMed  Google Scholar 

  • Habets GGM, Van der Kammen R, Scholtes WHM, Collard JG (1990) Induction of invasive and metastatic potential in mouse T lymphoma cells (BW5147) by treatment with 5-azacytidine. Clin Exp Metastasis 8: 567–577

    Article  PubMed  CAS  Google Scholar 

  • Habets GGM, Van der Kammen RA, Willemsen V, Balemans M, Wiegant J, Collard JG (1992) Sublocalization of an invasion-inducing locus and other genes on human chromosome 7. Cytogenet Cell Genet 60: 200–205

    Article  PubMed  CAS  Google Scholar 

  • Habets GGM, Scholtes EHM, Zuydgeest D, Van der Kammen RA, Stam JC, Berns A, Collard JG (1994) Identification of an invasion-inducing gene, Tiam-1, that encodes a protein with homology to GDP-GTP exchangers for rho-like proteins. Cell 77: 537–549

    Article  PubMed  CAS  Google Scholar 

  • Habets GGM, Van der Kammen RA, Jenkins NA, Gilbert DJ, Copeland NG, Hagemeijer A, Collard JG (1995a) The invasion-inducing TIAM-1 gene maps to human chromosome band 21q22 and mouse chromosome 16. Cytogenet Cell Genet 70: 48–51

    Article  PubMed  CAS  Google Scholar 

  • Habets GGM, van der Kammen RA, Stam JC, Michiels F, Collard JG (1995b) Sequence of the human invasion-inducing TIAM1 gene, its conversion in evolution and its expression in tumor cell lines of different tissue origin. Oncogene 10: 1371–1376

    PubMed  CAS  Google Scholar 

  • Hall A (1990) The cellular functions of small GTP-binding proteins. Science 249: 635–640

    Article  PubMed  CAS  Google Scholar 

  • Hall A (1992) Ras-related GTPases and the cytoskeleton. Mol Biol Cell 3: 475–479

    PubMed  CAS  Google Scholar 

  • Harlan JE, Hajduk PJ, Yoon HS, Fesik SW (1994) Pleckstrin homology domains bind to phosphatidylinositol-4, 5-bisphosphate. Nature 371: 168–170

    Article  PubMed  CAS  Google Scholar 

  • Hart MJ, Eva A, Zangrilli D, Aaronson SA, Evans T, Cerione RA, Zheng Y (1994) Cellular transformation and guanine nucleotide exchange activity are catalyzed by a common domain on the dbl oncogene product. J Biol Chem 269: 62–65

    PubMed  CAS  Google Scholar 

  • Horii Y, Beeler JF, Sakaguchi K, Tachibana M, Miki T (1994) A novel oncogene, ost, encodes a guanine nucleotide exchange factor that potentiality links Rho and Rae signaling pathways. EMBO J 13: 4776–4786

    PubMed  CAS  Google Scholar 

  • Imamura F, Horai T, Mukai M, Shinkai K, Sawada M, Akedo H (1993) Induction of in vitro tumor cell invasion of cellular monolayers by lysophosphatidic acid or phospholipase D. Biochem Biophys Res Commun 193: 497–503

    Article  PubMed  CAS  Google Scholar 

  • Katzav S, Martin-Zanca D, Barbacid M (1989) Vav, a novel human oncogene derived from a locus ubiquitously expressed in hematopoietic cells. EMBO J 8: 2283–2290

    PubMed  CAS  Google Scholar 

  • Katzav S, Cleveland JL, Heslop HE, Pulido D (1991) Loss of the amino-terminal helix-loop-helix domain of the vav proto-oncogene activates its transforming potential. Mol Cell Biol 11: 1912–1920

    PubMed  CAS  Google Scholar 

  • Lassing I, Lindberg U (1985) Specific interaction between phosphatidylinositol 4, 5 bisphosphate and profilactin. Nature 314: 472–474

    Article  Google Scholar 

  • Leevers SJ, Paterson HF, Marshall CJ (1994) Requirement for Ras in Raf activation is overcome by targeting Raf to the plasma membrane. Nature 369: 411–420

    Article  PubMed  CAS  Google Scholar 

  • Leone A, Flatow U, King CR, Sandeen MA, Margulies IM, Liotta LA, Steeg PS (1991) Reduced tumor incidence, metastatic potential, and cytokine responsiveness of nm23-transfected melanoma cells. Cell 65: 25–35

    Article  PubMed  CAS  Google Scholar 

  • Liotta LA, Steeg P, Stetler Stevenson WG (1991) Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell 64: 327–336

    Article  PubMed  CAS  Google Scholar 

  • Manser E, Leung T, Salihuddin H, Zhao ZS, Lim L (1994) A brain serine threonine protein kinase activated by Cdc42 and Rac1. Nature 367: 40–46

    Article  PubMed  CAS  Google Scholar 

  • McGlade J, Brunkhorst B, Anderson D, Mbamalu G, Settleman J, Dedhar S, Rozakis-Adcock M, Chen LB, Pawson T (1993) The N-terminal region of GAP regulates cytoskeletal structure and cell adhesion. EMBO J 12: 3073–3081

    PubMed  CAS  Google Scholar 

  • Michiels F, Habets GGM, Stam JC, Van der Kammen RA, Collard JG (1995) A role for Rae in Tiaml-induced membrane ruffling and invasion. Nature 375: 338–340

    Article  PubMed  CAS  Google Scholar 

  • Miki T, Smith CL, Long JE, Eva A, Fleming TP (1993) Oncogene ect2 is related to regulators of small GTP-binding proteins. Nature 362: 462–465 (erratum published in Nature 364: 737)

    Google Scholar 

  • Nobes C, Hawkins P, Stephens L, Hall A (1995) Activation of the small GTP-binding proteins Rho and Rae by growth factor receptors. J Cell Sci 108: 225–233

    PubMed  CAS  Google Scholar 

  • Parker PJ, Waterfield MD (1992) Phosphatidylinositol 3-kinase: a novel effector. Cell Growth Differ 3: 747–752

    PubMed  CAS  Google Scholar 

  • Paterson HF, Self AJ, Garrett MD, Just I, Aktories K, Hall A (1990) Microinjection of recombinant p21 rho induces rapid changes in cell morphology. J Cell Biol 111: 1001–1007

    Article  PubMed  CAS  Google Scholar 

  • Perona R, Esteve P, Jimenez B, Ballestero RP, Cajal SR (1993) Tumorigenic activity of rho genes from aplysia-californica. Oncogene 8: 1285–1292

    PubMed  CAS  Google Scholar 

  • Ponting CP, Philips C (1995) DHR domains in synthrophins, neuronal NO synthases and other intracellular proteins. Trends Biochem Sci 20: 102–103

    Article  PubMed  CAS  Google Scholar 

  • Qiu R, Kirn D, McCormick F, Symons M (1995) An essential role for Rae in Ras transformation. Nature 374: 457–459

    Article  PubMed  CAS  Google Scholar 

  • Reinhard J, Scheel AA, Diekmann D, Hall A, Ruppert C, Bahler M (1995) A novel type of myosin implicated in signalling by Rho family GTPases. EMBO J 14: 101–108

    Google Scholar 

  • Ridley AJ (1994) Membrane ruffling and signal transduction. Bioessays 16: 321–327

    Article  PubMed  CAS  Google Scholar 

  • Ridley AJ, Hall A (1992) The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibres in response to growth factors. Cell 70: 389–399

    Article  PubMed  CAS  Google Scholar 

  • Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A (1992) The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70: 401–410

    Article  PubMed  CAS  Google Scholar 

  • Ridley A, Self AJ, Kasmi F, Paterson HF, Hall A, Marshall CJ, Ellis C (1993) Rho family GTPase activating proteins p190, Ber and RhoGAP show distinct specificities in vitro and in vivo. EMBO J 12: 5151–5160

    PubMed  CAS  Google Scholar 

  • Roos E, La Rivière G, Collard JG, Stukart MJ, de Baetselier P (1985) Invasiveness of T cell hybridomas in vitro and their metastatic potential in vivo. Cancer Res 45: 6238–6243

    PubMed  CAS  Google Scholar 

  • Roossien FF, de Rijk D, Bikker A, Roos E (1989) Involvement of LFA-1 in lymphoma invasion and metastasis demonstrated with LFA-1-deficient mutants. J Cell Biol 108: 1979–1985

    Article  PubMed  CAS  Google Scholar 

  • Sekine A, Fujiwara M, Narumiya S (1989) Asparagine residue in the rho gene product is the modification site for botulinum ADP-ribosyltransferase. J Biol Chem 264: 8602–8605

    PubMed  CAS  Google Scholar 

  • Settleman J, Albright CF, Foster LC, Weinberg RA (1992a) Association between GTPase activators for Rho and Ras families. Nature 359: 153–154

    Article  PubMed  CAS  Google Scholar 

  • Settleman J, Narashimhan V, Foster LC, Weinberg RA (1992b) Molecular cloning of cdnas encoding the gap-associated protein p190: implications for a signaling pathway from ras to the nucleus. Cell 69: 539–549

    Article  PubMed  CAS  Google Scholar 

  • Simon MA, Dodson GS, Rubin GM (1993) An SH3-SH2-SH3 protein is required for p21 (Ras1) activation and binds to sevenless and Sos proteins in vitro. Cell 73: 169–177

    Article  PubMed  CAS  Google Scholar 

  • Takaishi K, Kikuchi A, Kuroda S, Kotani K, Sasaki T, Takai Y (1993) Involvement of rho p21 and its inhibitory GDP/GTP exchange protein (rho GDI) in cell motility. Mol Cell Biol 13: 72–79

    PubMed  CAS  Google Scholar 

  • Takaishi K, Sasaski T, Kato M, Yamochi W, Kuroda S, Nakamura T, Takeichi M, Takai Y (1994) involvement of Rho P21 small GTP-binding protein and its regulator in the HGF-induced cell motility. Oncogene 9: 273–279

    PubMed  CAS  Google Scholar 

  • Tominaga T, Sugie K, Hirata M, Morii N, Fukata J, Uchida A, Narumiya S (1993) Inhibition of PMA-induced, lfa-1 -dependent lymphocyte aggregation by ADP ribosylation of the small molecular weight GTP binding protein, rho. J Cell Biol 120: 1529–1537

    Article  PubMed  CAS  Google Scholar 

  • van Corven EJ, Groenink A, Jalink K, Eichholtz T, Moolenaar WH (1989) Lysophosphatidate-induced cell proliferation: identification and dissection of signaling pathways mediated by G proteins. Cell 59: 45–54

    Article  PubMed  Google Scholar 

  • van der Bend RL, Brunner J, Jalink K, van Corven EJ, Moolenaar WH, van Blitters WJ (1992) Identification of a putative membrane receptor for the bioactive phospholipid, lysophosphatidic acid. EMBO J 11: 2495–2501

    PubMed  Google Scholar 

  • van Leeuwen FN, van der Kammen RA, Habets GGM, Collard JG (1995) Oncogenic activity of Tiaml and Rac1 in NIH3T3 cells. Oncogene 11: 2215–2221

    PubMed  Google Scholar 

  • Vleminckx K, Vakaet L Jr, Mareel M, Fiers W, Van Roy F (1991) Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role. Cell 66: 107–119

    Article  PubMed  CAS  Google Scholar 

  • Wennstrom S, Hawkins P, Cooke F, Hara K, Yonezawa K, Kasuga M, Jackson T, Claesson-Welsh L, Stephens L (1994) Activation of phosphoinositide 3-kinase is required for PDGF-stimulated membrane ruffling. Curr Biol 4: 385–393

    Article  PubMed  CAS  Google Scholar 

  • Weilenga VJM, Heider KH, Offerhaus GJA, Adolf GR, Van Den berg FM, Ponta H, Herrlich P, Pals ST (1993) Expression of CD44 variant proteins in human colorectal cancer is related to tumor progression. Cancer Res 53: 4754–4756

    Google Scholar 

  • Yano H, Nakanishi S, Kimura K, Hanai N, Saitoh Y, Fukui Y, Nonomura Y, Matsuda Y (1993) Inhibition of histamine secretion by wortmannin through the blockade of phosphatidylinositol 3-kinase in RBL- 2H3 cells. J Biol Chem 268: 25846–25856

    PubMed  CAS  Google Scholar 

  • Zheng Y, Cerione R, Bender A (1994) Control of the yeast bud-site assembly GTPase Cdc42 — catalysis of guanine nucleotide exchange by Cdc24 and stimulation of GTPase activity by Bem3. J Biol Chem 269: 2369–2372

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Collard, J.G., Habets, G.G.M., Michiels, F., Stam, J., van der Kammen, R.A., van Leeuwen, F. (1996). Role of Tiam 1 in Rac-Mediated Signal Transduction Pathways. In: Günthert, U., Birchmeier, W. (eds) Attempts to Understand Metastasis Formation II. Current Topics in Microbiology and Immunology, vol 213/2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61109-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61109-4_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64698-0

  • Online ISBN: 978-3-642-61109-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics