Skip to main content

Kidney function and fluid homeostasis

  • Chapter
Biological and Medical Research in Space
  • 128 Accesses

Abstract

Ever since Yuri Gagarin landed in 1961 having performed the first manned space flight, a number of physiological and medical questions related to weightlessness have been investigated. Before the advent of manned space flight it was hypothesized that the absence of gravitational stress would induce a redistribution of body fluid from the legs headward, due to the absence of hydrostatic pressure gradients (for review see Gauer & Henry 1963), which would in turn induce changes in kidney function and fluid homeostasis. Because changes in kidney function and fluid homeostasis are relatively slow processes, space flight is the optimal condition for investigations of the influence of weightlessness on these variables. Since it was already well known that water immersion and bed rest induced increases in renal fluid and electrolyte excretion, these models were used as means of simulating the expected effects of weightlessness. Indeed, observations of puffy faces and thin legs (‘bird legs’’) in the first astronauts combined with an almost immediate loss of body mass (Norsk & Epstein 1991) initially seemed to verify the hypothesis that increases in central blood volume through stimulation of volume receptors in the thorax induced an increased renal output of fluid and electrolytes and thus a loss in body mass.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Annat G, Guell A, Gauquelin G, Vincent M, Mayet MH, Bizollon CA, Legros JJ, Pottier JM & Gharib C. Plasma vasopressin, neurophysin, renin and aldosterone during a 4-day head-down bed rest with and without exercise. Eur. J. Appl. Physiol. 55: 59–63, 1986.

    Article  CAS  Google Scholar 

  • Bennet ED, Tighe D & Wegg W. Abolition, by dopamine blockade, of the natriuretic response produced by lower-body positive pressure. Clin. Sci. 63: 361–6, 1982.

    Google Scholar 

  • Buckey JC, Gaffney FA , Lane LD, Levine BD, Watenpaugh DE & Blomquist CG. Central venous pressure in space (letter). New England J. Med. 328: 8513–4, 1993.

    Article  Google Scholar 

  • Bungo MW; Goldwater DJ, Popp RL & Sandler H. Echocardiographic evaluation of Space shuttle crew members. J. Appl. Physiol. 62: 278–83, 1987.

    PubMed  CAS  Google Scholar 

  • Chobanian AV, Lille RD, Tercyak A & Blevins P. The metabolic and hemodynamic effects of prolonged bed rest in normal subjects. Circulation 49: 551–9, 1974.

    PubMed  CAS  Google Scholar 

  • Cintron NM, Lane HW & Leach CS. Metabolic consequences of fluid shifts induced by microgravity. The Physiologist 33: S16 – S19, 1990.

    PubMed  CAS  Google Scholar 

  • Coruzzi P, Biggi A, Musiari L, Ravanetti C & Novarini A. Renal hemodynamics and natriuresis during water immersion in normal humans. Pfluegers Arch. 407: 638– 42,1986.

    Article  CAS  Google Scholar 

  • DeBold AJ, Borenstein HB, Veress AT, Sonnenberg H. A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Life Sci. 28: 89–94,1981.

    Article  PubMed  Google Scholar 

  • Drummer C, Heer M, Dressendorfer RA, Strasburger CJ & Gerzer R. Reduced natriuresis during weightlessness. Clin. Invest. 71: 678–86, 1993.

    Article  CAS  Google Scholar 

  • Epstein M. Renal effects of head-out water immersion in humans: a 15-year update. Physiol. Rev. 72: 563–621,1992.

    PubMed  CAS  Google Scholar 

  • Fortney SM, Hyatt KH, Davis JE & Vogel JM. Changes in body fluid compartments during a 28-day bed rest. Aviat. Space Environ. Med. 62: 97–104, 1991.

    PubMed  CAS  Google Scholar 

  • Gaffney FA, Thai ER, Taylor WF, Bastian BC, Weigelt JA, Atkins JM & Blomqvist CG. Hemodynamic effects of medical antishock trousers (MAST garment). J. Trauma 21: 931–7, 1981.

    Article  PubMed  CAS  Google Scholar 

  • Gauer OH & Henry JP. Circulatory basis of fluid volume control. Physiol. Rev. 43: 423–481, 1963.

    PubMed  CAS  Google Scholar 

  • Gauer OH & Sieker HO. The continuous recording of central venous pressure changes from an arm vein. Circ. Res. 4: 74–8, 1956.

    PubMed  CAS  Google Scholar 

  • Gauer OH, Henry JP & Sieker OH. Changes in central venous pressure after moderate hemorrhage and transfusion in man. Circ. Res. 4: 79–84, 1956.

    PubMed  CAS  Google Scholar 

  • Gazenko OG, Schultzhenko EB, Grigoriev EB, Atkov Oyu & Egorov AD. Review of basic medical results of the Saluyt-7-Soyuz-T 8 month manned flight. Acta Astronautica 17: 155–60, 1988.

    Article  PubMed  CAS  Google Scholar 

  • Geelen, G, Arbeille P, Saumet J-L, Cottet-Emard J-M, Patat F & Vincent M. Hemodynamic and hormonal effects of prolonged anti-G suit inflation in humans. J. Appl. Physiol. 77: 977–84, 1992.

    Google Scholar 

  • Geelen G, Kravik SE, Hadj-Aissa A, Leftheriotis G, Vincent M, Bizollon CA, Sem-Jacobsen CW, Greenleaf JE & Gharib C. Antigravity suit inflation: kidney function and cardiovascular and hormonal responses in men. J. Appl. Physiol. 66: 792-9, 1989.

    PubMed  CAS  Google Scholar 

  • Gharib C, Gauquelin G, Pequignot JM, Geelen G, Bizollon CA & Güell A. Early hormonal effects of head-down tilt (-10) in humans. Aviat. Space Environ. Med. 59: 624–9,1988.

    PubMed  CAS  Google Scholar 

  • Goetz KL. Physiology and pathophysiology of atrial peptides.Amer. J. Physiol. 254 (Endocrinol. Metab. 17): E1–E15, 1988.

    PubMed  CAS  Google Scholar 

  • Goetz KL. Is urodilatin (rather than atriopeptin) the primary natriuretic peptide of the ANP family? J. Cardiovasc. Pharmacol. 22, Suppl. 2: S84–5, 1993.

    Article  Google Scholar 

  • Gogolev KI, Aleksandrova EA & Shulzhenko EB. Comparative assessment of changes during antiorthostatic hypokinesia and immersion in man. Fiziologia Cheloveka 6: 978–83, 1980.

    Google Scholar 

  • Goldsmith SR, Francis GS & Cohn JN. Effect of head-down tilt on basal plasma norepinephrine and renin activity in humans. J. Appl. Physiol. 59: 1068–71, 1985.

    PubMed  CAS  Google Scholar 

  • Graveline DE & McCally M. Body fluid distribution: implications for zero gravity. Aerospace Med. 33: 1281–90, 1962.

    PubMed  CAS  Google Scholar 

  • Greenleaf JE. Physiological responses to prolonged bed rest and fluid immersion in humans. J. Appl. Physiol. 57: 619–33, 1984.

    PubMed  CAS  Google Scholar 

  • Greenleaf JE, Vernikos J, Wade CE & Barnes PR. Effect of leg exercise training on vascular volumes during 30 days of -6° head-down bed rest. J. Appl. Physiol. 72: 1887–94, 1992.

    PubMed  CAS  Google Scholar 

  • Grigoriev AI, Morukov BV & Vorobiev DV. Water and electrolyte studies during long-term missions on board the space stations SALYUT and MIR. Clin. Invest. 72: 169–89, 1994.

    Article  CAS  Google Scholar 

  • Grossman E, Goldstone DS, Hoffman A, Wacks IR & Epstein M. Effects of water immersion on sympathoadrenal and dopa-dopamine systems in humans. Amer. J. Physiol. 262: R993–R999, 1992.

    PubMed  CAS  Google Scholar 

  • Herbute, S., Oliver, J., Davet, J., Viso, M., Ballard, R.W., Gharib, C., Gabrion, and J. ANP binding sites are increased in choroid plexus of SLS-1 rats after 9 days of spaceflight. Aviat. Space & Environ. Med. 65:134–8, 1994.

    CAS  Google Scholar 

  • Hoffler GW & Johnson RL. Apollo flight crew cardiovascular evaluations. In: Biomedical Results of Apollo. Ed. by Johnston RS & Dietlein F. NASA special report SP-368, pp. 244-65,1975.

    Google Scholar 

  • Huntoon CL, Cintron NM & Whitson PA. Endocrine and biochemical functions. In: Space Physiology and Medicine. Ed. by Nicogossian AE, Huntoon CL, Pool SL. Lea & Fabiger, 3rd edn, pp. 334-50, 1994>

    Google Scholar 

  • Johansen LB, Foldager N, Stadeager C, Kristensen MS, Bie P, Warberg J, Kamegai M & Norsk P. Plasma volume, fluid shifts, and renal responses in humans during 12 h of head-out water immersion. J. Appl. Physiol. 73: 539–44,1992.

    PubMed  CAS  Google Scholar 

  • Kass DA & Moore-Ede MC. Renal responses to prolonged central volume expansion in conscious primates. Amer. J. Physiol. 242: F649–F656,1982.

    PubMed  CAS  Google Scholar 

  • Kerwin JP. Skylab 2 crew observations, summary. In: Biomedical Results from Skylab. Ed. by Johnston RS & Dietlein F. NASA special report SP-377, pp. 27-9, 1977.

    Google Scholar 

  • Kirsch KA, Rocker L, Gauer OH, Krause R, Leach C, Wicke HJ & Landry R. Venous pressure in man during weightlessness Science 225: 218–9, 1984.

    Article  PubMed  CAS  Google Scholar 

  • Kirsch KA, Rocker L, Krause R & Gauer OH. Cardiovascular research in space: problems and results. AGARD Conference Proceedings, No. 377: 8/1-8/9, 1985.

    Google Scholar 

  • Kirsch KA, Rocker L & Haenel F. Venous pressure in space. In: Proceedings of the Norderny Symposium on the Scientific Results of the German Spacelab Mission D-1. Ed. by Sahm PR, Jansen R & Keller MH. Koln, Germany, DFVLR, pp. 500–3, 1986.

    Google Scholar 

  • Krishna GG & Danovitch GM. Renal response to lower body positive pressure produced by military anti-shock trousers. Amer. J. Nephro1. 4: 13–18, 1984.

    Article  CAS  Google Scholar 

  • Kubicek WG, Karnagis JN, Patterson RP et al. Development and evaluation of an impedance cardiac output system. Aerospace Med. 37:1208–12, 1966.

    PubMed  CAS  Google Scholar 

  • Larsen AS, Johansen LB, Stadeager C, Warberg J, Christensen NJ & Norsk P. Volumehomeostatic mechanisms in humans during graded water immersion. J Appl. Physiol. 77: 2832–9, 1994.

    PubMed  CAS  Google Scholar 

  • Latham RD, Fanton JW, Vernalis MN, Gaffney FA & Crisman RP. Central hemodynamics in a baboon model during microgravity induced by parabolic flight.Adv. Space Res. 14: 349–58, 1994.

    Article  PubMed  CAS  Google Scholar 

  • Lathers CM, Charles JB, Olden KF, Holt TA, Mukai C, Bennett BS & Bungo MW. Acute hemodynamic responses to weightlessness in humans. J. Clin. Phamacol. 29: 615–27, 1989.

    CAS  Google Scholar 

  • Leach CS. Medical results from STS 1-4: analysis of body fluids. Aviat. Space Environ. Med. 54, Suppl. 1: S50–S54, 1983.

    PubMed  CAS  Google Scholar 

  • Leach CS. Changes in renal function and fluid and electrolyte regulation in space flight. World Space Congress, Washington, DC, August 28 - September 5, 1992. Book of abstracts, paper no. IAF/IAA-92-0256: p. 81, 1992.

    Google Scholar 

  • Leach CS, Alexander WC & Johnson PC. Endocrine, electrolyte, and fluid volume changes associated with the Apollo missions. In: Biomedical Results of Apollo. Ed. by Johnston RS & Dietlein F. NASA special report SP-368, pp. 163-84, 1975.

    Google Scholar 

  • Leach CS, Altschuler SI & Cintron-Trevino NM. The endocrine and metabolic responses to space flight. Med. Sci. Sports Exerc. 15: 432–40, 1983.

    PubMed  CAS  Google Scholar 

  • Leach CS, Inners LD & Charles JB. Changes in total body water during spaceflight. J. Clin. Pharmacol. 31: 1001–6,1991.

    PubMed  CAS  Google Scholar 

  • Leach CS & Johnson PC. Fluid and electrolyte control in simulated and actual space flight. Physiologist, 28, Suppl. 6, pp. S34–S37, 1985.

    PubMed  CAS  Google Scholar 

  • Leach CS, Johnson PC & Cintron NM. The regulation of fluid and electrolyte metabolism in weightlessness. Proc. of the 2nd International Conference on Space Physiology, Toulouse, France 20-22 November, 1985. ESA SP-237, pp. 31-6, 1985.

    Google Scholar 

  • Leach CS, Johnson PC & Cintron NM. The endocrine system in space flight. Acta Astronautica 17: 161–6, 1988.

    Article  PubMed  CAS  Google Scholar 

  • Leach CS, Johnson PC & Rambaut PC. Metabolic and endocrine studies: the second manned Skylab mission. Aviat. Space Environ. Med. 47: 402–10, 1976.

    PubMed  CAS  Google Scholar 

  • Leach CS, Leonard JI, Rambaut PC & Johnson PC. Evaporative water loss in man in a gravity-free environment. J. Appl. Physiol. 45: 430–6,1978.

    PubMed  CAS  Google Scholar 

  • Leach CS & Rambaut PC. Biomedical responses of the Skylab crewmen: an overview. In: Biomedical Results from Skylab. Ed. by Johnston RS & Dietlein E NASA spec, rep. SP-377, pp. 204-15, 1977.

    Google Scholar 

  • Leach CS, Rambaut PC, Johnson PC. Adrenocortical responses of the Apollo 17 crew members. Aerospace Med. 45: 529–34, 1974.

    PubMed  CAS  Google Scholar 

  • Lockette W & Brennaman B. Atrial Natriuretic Factor increases vascular permeability. Aviat. Space Environ. Med. 61:1121–4, 1990.

    PubMed  CAS  Google Scholar 

  • Lutwak L, Whedon GD, Lahance PA, Reid M & Lipscomb S. Mineral, electrolyte and nitrogen balance studies of the Gemini-VII fourteen-day orbital space flight. J. Clin. Endocrin. 29: 1140–56, 1969.

    Article  CAS  Google Scholar 

  • Minners HA, White SC, Douglas WK, Knoblock EC & Gabriel A. Clinical aeromedical observations. In: Results of the Second United States Manned Orbital Space Flight. NASA SP-6, pp. 43-53, May 24, 1962.

    Google Scholar 

  • Norsk P. Influence of low- and high-pressure baroreflexes on vasopressin release in humans. Acta Endocrinol. 121, Suppl. 1: 1–27, 1989.

    Google Scholar 

  • Norsk, P. Gravitational stress and volume regulation. Clin. Physiol. 12: 505–26, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Norsk P, Drummer C, Johansen LB & Gerzer R. Effect of water immersion on renal natriuretic peptide (urodilatin) excretion in humans. J. Appl. Physiol. 74: 2881–5,1993.

    PubMed  CAS  Google Scholar 

  • Norsk P, Drummer C, Rocker L, Strollo F, Christensen NJ, Warberg F, Bie P, StadegerC, Johansen LB, Heer M, Gunga H-C & Gerzer R. Renal and endocrine responses in humans to isotonic saline infusion during microgravity. J. Appl. Physiol. 78: 2253–2259, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Norsk P & Epstein M. Effects of water immersion on arginine vasopressin release in humans. J. Appl. Physiol. 64: 1–10,1988.

    Article  PubMed  CAS  Google Scholar 

  • Norsk P & Epstein M. Manned space flight and the kidney. Amer. J. Nephrol. 11: 81–97, 1991.

    CAS  Google Scholar 

  • Norsk P, Foldager N, Bonde-Petersen F, Elmann-Larsen B & Johansen TS. Central venous pressure in humans during short term periods of weightlessness. J. Appl. Physiol. 63: 2433–7,1987.

    PubMed  CAS  Google Scholar 

  • Norsk P, Stadeager C, Johansen LB, Warberg J, Bie P, Foldager N & Christensen NJ. Volume-homeostatic mechanisms in humans during a 12-h posture change. J. Appl. Physiol. 75: 349–6, 1993.

    PubMed  CAS  Google Scholar 

  • Schmitt HH & Reid DJ. Anecdotal Information on Space Adaptation Syndrome. NASA Space Biomedical Research Inst., USRA, Div. Space Biomedicine, 1985.

    Google Scholar 

  • Schulz-Knappe P, Forssmann K, Herbst F, Hock D, Pipkorn R & Forssmann WG. Isolation and structural analysis of ’urodilatin’, a new peptide of the cardiodilatin- (ANP)-family, extracted from human urine. Klinische Wochenschrift 66:752–9,1988.

    Article  PubMed  CAS  Google Scholar 

  • Shi X, Crandall CG & Raven PB. Hemodynamic responses to graded lower body positive pressure. Amer. J. Physiol. 265 (Heart Circ. Physiol. 34): H69–H73, 1993.

    PubMed  CAS  Google Scholar 

  • Stadeager C, Johansen LB, Warberg J, Christensen NJ, Foldager N, Bie P & Norsk P. Circulation, kidney function, and volume-regulating hormones during prolonged water immersion in humans. J. Appl. Physiol. 73: 530–8, 1992.

    PubMed  CAS  Google Scholar 

  • Thornton WE & Ord J. Physiological mass measurements in Skylab. In: Biomedical Results from Skylab. Ed. by Johnston RS & Dietlein F. NASA special report SP-377, pp. 175-82, 1977.

    Google Scholar 

  • Thornton WE, Hofffler GW & Rummel JA. Anthropometric changes and fluid shifts. In: Biomedical Results from Skylab. Ed. by Johnston RS & Dietlein F. NASA special report SP-377> PP- 330-8, 1977.

    Google Scholar 

  • Thornton WE, Moore TP, & Pool SL. Fluid shifts in weightlessness. Aviat. Space Environ. Med. 58, Suppl. 9: A86–90, 1987.

    PubMed  CAS  Google Scholar 

  • Volicer L, Jean-Charles R & Chobanian A. Effects of head-down tilt on fluid and electrolyte balance. Aviat. Space Environ. Med. 47: 1065–8, 1976.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bie, P., Bestle, M.H., Johansen, L.B. (1996). Kidney function and fluid homeostasis. In: Moore, D., Bie, P., Oser, H. (eds) Biological and Medical Research in Space. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61099-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61099-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64694-2

  • Online ISBN: 978-3-642-61099-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics